1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
/*************************************************************************
* Copyright (C) 2009-2010 Tavian Barnes <tavianator@gmail.com> *
* *
* This file is part of The vZ Library. *
* *
* The vZ Library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public License as *
* published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The vZ Library is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
#ifndef VZ_ADAPTIVE_HPP
#define VZ_ADAPTIVE_HPP
#include <cmath>
namespace vZ
{
// Base class for adaptive RK-style algorithms
template <typename Y>
class GenericAdaptiveIntegrator : public GenericRKIntegrator<Y>
{
public:
typedef typename GenericRKIntegrator<Y>::Scalar Scalar;
typedef typename GenericRKIntegrator<Y>::Function Function;
GenericAdaptiveIntegrator& tol(Scalar tol)
{ m_atol = tol; m_rtol = tol; return *this; }
GenericAdaptiveIntegrator& atol(Scalar tol) { m_atol = tol; return *this; }
GenericAdaptiveIntegrator& rtol(Scalar tol) { m_rtol = tol; return *this; }
Scalar atol() const { return m_atol; }
Scalar rtol() const { return m_rtol; }
unsigned int rejections() const { return m_rejections; }
protected:
typedef typename GenericRKIntegrator<Y>::ACoefficients ACoefficients;
typedef typename GenericRKIntegrator<Y>::BCoefficients BCoefficients;
typedef typename GenericRKIntegrator<Y>::KVector KVector;
GenericAdaptiveIntegrator(Function f, unsigned int order,
ACoefficients a, BCoefficients b,
BCoefficients bStar)
: GenericRKIntegrator<Y>(f), m_order(order), m_rejections(0),
m_a(a), m_b(b), m_bStar(bStar)
{ }
virtual ~GenericAdaptiveIntegrator() { }
void step();
private:
Scalar m_atol, m_rtol;
unsigned int m_order;
unsigned int m_rejections;
ACoefficients m_a;
BCoefficients m_b, m_bStar;
};
// Type alias
typedef GenericAdaptiveIntegrator<double> AdaptiveIntegrator;
// Implementations
template <typename Y>
void
GenericAdaptiveIntegrator<Y>::step()
{
static const Scalar S = Scalar(19)/Scalar(20); // Arbitrary saftey factor
Scalar newH;
Y y;
// Attempt the integration step in a loop
bool rejected = true;
while (rejected) {
KVector k = calculateK(m_a);
y = calculateY(k, m_b);
Y yStar = calculateY(k, m_bStar);
// Get an error estimate
using std::abs;
using std::pow;
Scalar delta = abs(y - yStar);
Scalar scale = m_atol + std::max(abs(y), abs(this->y()))*m_rtol;
newH = S*this->h()*pow(scale/delta, Scalar(1)/m_order);
if (delta > scale) {
// Reject the step
this->h(newH);
++m_rejections;
} else {
rejected = false;
}
}
// Update x and y
this->y(y);
this->x(this->x() + this->h());
// Adjust the stepsize for the next iteration
this->h(newH);
}
}
#endif // VZ_ADAPTIVE_HPP
|