summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/forest.rs280
-rw-r--r--src/frontier.rs2
-rw-r--r--src/frontier/image.rs4
-rw-r--r--src/frontier/mean.rs10
-rw-r--r--src/frontier/min.rs12
-rw-r--r--src/main.rs1
-rw-r--r--src/soft.rs288
7 files changed, 215 insertions, 382 deletions
diff --git a/src/forest.rs b/src/forest.rs
index 28ccb24..4feffcb 100644
--- a/src/forest.rs
+++ b/src/forest.rs
@@ -7,6 +7,19 @@ use acap::vp::FlatVpTree;
use std::iter;
+/// A trait for objects that can be soft-deleted.
+pub trait SoftDelete {
+ /// Check whether this item is deleted.
+ fn is_deleted(&self) -> bool;
+}
+
+/// Blanket [SoftDelete] implementation for references.
+impl<'a, T: SoftDelete> SoftDelete for &'a T {
+ fn is_deleted(&self) -> bool {
+ (*self).is_deleted()
+ }
+}
+
/// The number of bits dedicated to the flat buffer.
const BUFFER_BITS: usize = 6;
/// The maximum size of the buffer.
@@ -15,7 +28,8 @@ const BUFFER_SIZE: usize = 1 << BUFFER_BITS;
/// A dynamic wrapper for a static nearest neighbor search data structure.
///
/// This type applies [dynamization](https://en.wikipedia.org/wiki/Dynamization) to an arbitrary
-/// nearest neighbor search structure `T`, allowing new items to be added dynamically.
+/// nearest neighbor search structure `T`, allowing new items to be added dynamically. It also
+/// implements [soft deletion](https://en.wiktionary.org/wiki/soft_deletion) for dynamic removal.
#[derive(Debug)]
pub struct Forest<T: IntoIterator> {
/// A flat buffer used for the first few items, to avoid repeatedly rebuilding small trees.
@@ -26,6 +40,7 @@ pub struct Forest<T: IntoIterator> {
impl<T, U> Forest<U>
where
+ T: SoftDelete,
U: FromIterator<T> + IntoIterator<Item = T>,
{
/// Create a new empty forest.
@@ -41,29 +56,65 @@ where
self.extend(iter::once(item));
}
- /// Get the number of items in the forest.
- pub fn len(&self) -> usize {
+ /// Remove deleted items from the buffer.
+ fn filter_buffer(&mut self) {
+ self.buffer.retain(|e| !e.is_deleted());
+ }
+
+ /// Drain all items out of the trees and into the buffer.
+ fn deforest(&mut self) {
+ self.buffer.extend(
+ self.trees
+ .drain(..)
+ .flatten()
+ .flatten()
+ .filter(|e| !e.is_deleted())
+ );
+ }
+
+ /// Move excess items from the buffer to the trees.
+ fn reforest(&mut self) {
let mut len = self.buffer.len();
- for (i, slot) in self.trees.iter().enumerate() {
- if slot.is_some() {
- len += 1 << (i + BUFFER_BITS);
+
+ for i in 0.. {
+ let bit = 1 << (i + BUFFER_BITS);
+ if bit > len {
+ break;
}
- }
- len
- }
- /// Check if this forest is empty.
- pub fn is_empty(&self) -> bool {
- if !self.buffer.is_empty() {
- return false;
+ if i >= self.trees.len() {
+ self.trees.push(None);
+ }
+
+ let tree = self.trees[i].take();
+ self.trees[i] = match (tree, len & bit > 0) {
+ (Some(tree), true) => {
+ len += bit;
+ self.buffer.extend(tree.into_iter().filter(|e| !e.is_deleted()));
+ None
+ }
+ (None, true) => {
+ let offset = self.buffer.len().saturating_sub(bit);
+ Some(self.buffer.drain(offset..).collect())
+ }
+ (tree, _) => tree,
+ }
}
- self.trees.iter().flatten().next().is_none()
+ debug_assert!(self.buffer.len() < BUFFER_SIZE);
+ }
+
+ /// Rebuild this index, discarding deleted items.
+ pub fn rebuild(&mut self) {
+ self.filter_buffer();
+ self.deforest();
+ self.reforest();
}
}
impl<T, U> Default for Forest<U>
where
+ T: SoftDelete,
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn default() -> Self {
@@ -73,44 +124,22 @@ where
impl<T, U> Extend<T> for Forest<U>
where
+ T: SoftDelete,
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
self.buffer.extend(items);
- if self.buffer.len() < BUFFER_SIZE {
- return;
- }
-
- let len = self.len();
- for i in 0.. {
- let bit = 1 << (i + BUFFER_BITS);
-
- if bit > len {
- break;
- }
-
- if i >= self.trees.len() {
- self.trees.push(None);
- }
-
- if len & bit == 0 {
- if let Some(tree) = self.trees[i].take() {
- self.buffer.extend(tree);
- }
- } else if self.trees[i].is_none() {
- let offset = self.buffer.len() - bit;
- self.trees[i] = Some(self.buffer.drain(offset..).collect());
- }
+ if self.buffer.len() >= BUFFER_SIZE {
+ self.filter_buffer();
+ self.reforest();
}
-
- debug_assert!(self.buffer.len() < BUFFER_SIZE);
- debug_assert!(self.len() == len);
}
}
impl<T, U> FromIterator<T> for Forest<U>
where
+ T: SoftDelete,
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
@@ -120,19 +149,55 @@ where
}
}
-impl<T: IntoIterator> IntoIterator for Forest<T> {
- type Item = T::Item;
- type IntoIter = std::vec::IntoIter<T::Item>;
+impl<T, U> IntoIterator for Forest<U>
+where
+ T: SoftDelete,
+ U: FromIterator<T> + IntoIterator<Item = T>,
+{
+ type Item = T;
+ type IntoIter = std::vec::IntoIter<T>;
fn into_iter(mut self) -> Self::IntoIter {
- self.buffer.extend(self.trees.into_iter().flatten().flatten());
+ self.filter_buffer();
+ self.deforest();
self.buffer.into_iter()
}
}
+/// [Neighborhood] wrapper that ignores soft-deleted items.
+#[derive(Debug)]
+struct SoftNeighborhood<N>(N);
+
+impl<K, V, N> Neighborhood<K, V> for SoftNeighborhood<N>
+where
+ V: SoftDelete,
+ K: Proximity<V>,
+ N: Neighborhood<K, V>,
+{
+ fn target(&self) -> K {
+ self.0.target()
+ }
+
+ fn contains<D>(&self, distance: D) -> bool
+ where
+ D: PartialOrd<K::Distance>
+ {
+ self.0.contains(distance)
+ }
+
+ fn consider(&mut self, item: V) -> K::Distance {
+ if item.is_deleted() {
+ self.target().distance(&item)
+ } else {
+ self.0.consider(item)
+ }
+ }
+}
+
impl<K, V, T> NearestNeighbors<K, V> for Forest<T>
where
K: Proximity<V>,
+ V: SoftDelete,
T: NearestNeighbors<K, V>,
T: IntoIterator<Item = V>,
{
@@ -143,13 +208,18 @@ where
N: Neighborhood<&'k K, &'v V>
{
for item in &self.buffer {
- neighborhood.consider(item);
+ if !item.is_deleted() {
+ neighborhood.consider(item);
+ }
}
+ let neighborhood = SoftNeighborhood(neighborhood);
+
self.trees
.iter()
.flatten()
.fold(neighborhood, |n, t| t.search(n))
+ .0
}
}
@@ -163,7 +233,8 @@ pub type VpForest<T> = Forest<FlatVpTree<T>>;
mod tests {
use super::*;
- use acap::euclid::Euclidean;
+ use acap::coords::Coordinates;
+ use acap::euclid::{euclidean_distance, Euclidean, EuclideanDistance};
use acap::exhaustive::ExhaustiveSearch;
use acap::knn::{NearestNeighbors, Neighbor};
@@ -171,10 +242,66 @@ mod tests {
type Point = Euclidean<[f32; 3]>;
+ #[derive(Clone, Debug, PartialEq)]
+ struct SoftPoint {
+ point: [f32; 3],
+ deleted: bool,
+ }
+
+ impl SoftPoint {
+ fn new(x: f32, y: f32, z: f32) -> Self {
+ Self {
+ point: [x, y, z],
+ deleted: false,
+ }
+ }
+
+ fn deleted(x: f32, y: f32, z: f32) -> Self {
+ Self {
+ point: [x, y, z],
+ deleted: true,
+ }
+ }
+ }
+
+ impl SoftDelete for SoftPoint {
+ fn is_deleted(&self) -> bool {
+ self.deleted
+ }
+ }
+
+ impl Proximity for SoftPoint {
+ type Distance = EuclideanDistance<f32>;
+
+ fn distance(&self, other: &Self) -> Self::Distance {
+ euclidean_distance(&self.point, &other.point)
+ }
+ }
+
+ impl Coordinates for SoftPoint {
+ type Value = <Point as Coordinates>::Value;
+
+ fn dims(&self) -> usize {
+ self.point.dims()
+ }
+
+ fn coord(&self, i: usize) -> Self::Value {
+ self.point.coord(i)
+ }
+ }
+
+ impl Proximity<SoftPoint> for Point {
+ type Distance = EuclideanDistance<f32>;
+
+ fn distance(&self, other: &SoftPoint) -> Self::Distance {
+ euclidean_distance(&self, &other.point)
+ }
+ }
+
fn test_empty<T, F>(from_iter: &F)
where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
+ T: NearestNeighbors<Point, SoftPoint>,
+ F: Fn(Vec<SoftPoint>) -> T,
{
let points = Vec::new();
let index = from_iter(points);
@@ -189,38 +316,39 @@ mod tests {
fn test_pythagorean<T, F>(from_iter: &F)
where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
+ T: NearestNeighbors<Point, SoftPoint>,
+ F: Fn(Vec<SoftPoint>) -> T,
{
let points = vec![
- Euclidean([3.0, 4.0, 0.0]),
- Euclidean([5.0, 0.0, 12.0]),
- Euclidean([0.0, 8.0, 15.0]),
- Euclidean([1.0, 2.0, 2.0]),
- Euclidean([2.0, 3.0, 6.0]),
- Euclidean([4.0, 4.0, 7.0]),
+ SoftPoint::deleted(0.0, 0.0, 0.0),
+ SoftPoint::new(3.0, 4.0, 0.0),
+ SoftPoint::new(5.0, 0.0, 12.0),
+ SoftPoint::new(0.0, 8.0, 15.0),
+ SoftPoint::new(1.0, 2.0, 2.0),
+ SoftPoint::new(2.0, 3.0, 6.0),
+ SoftPoint::new(4.0, 4.0, 7.0),
];
let index = from_iter(points);
let target = Euclidean([0.0, 0.0, 0.0]);
assert_eq!(
index.nearest(&target).expect("No nearest neighbor found"),
- Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0)
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
);
assert_eq!(index.nearest_within(&target, 2.0), None);
assert_eq!(
index.nearest_within(&target, 4.0).expect("No nearest neighbor found within 4.0"),
- Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0)
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
);
assert!(index.k_nearest(&target, 0).is_empty());
assert_eq!(
index.k_nearest(&target, 3),
vec![
- Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
- Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0),
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
+ Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
+ Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
]
);
@@ -228,32 +356,38 @@ mod tests {
assert_eq!(
index.k_nearest_within(&target, 3, 6.0),
vec![
- Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
+ Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
]
);
assert_eq!(
index.k_nearest_within(&target, 3, 8.0),
vec![
- Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
- Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0),
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
+ Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
+ Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
]
);
}
fn test_random_points<T, F>(from_iter: &F)
where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
+ T: NearestNeighbors<Point, SoftPoint>,
+ F: Fn(Vec<SoftPoint>) -> T,
{
let mut points = Vec::new();
for _ in 0..255 {
- points.push(Euclidean([random(), random(), random()]));
+ points.push(SoftPoint::new(random(), random(), random()));
+ points.push(SoftPoint::deleted(random(), random(), random()));
}
let target = Euclidean([random(), random(), random()]);
- let eindex = ExhaustiveSearch::from_iter(points.clone());
+ let eindex: ExhaustiveSearch<_> = points
+ .iter()
+ .filter(|p| !p.is_deleted())
+ .cloned()
+ .collect();
+
let index = from_iter(points);
assert_eq!(index.k_nearest(&target, 3), eindex.k_nearest(&target, 3));
@@ -262,8 +396,8 @@ mod tests {
/// Test a [NearestNeighbors] impl.
fn test_nearest_neighbors<T, F>(from_iter: F)
where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
+ T: NearestNeighbors<Point, SoftPoint>,
+ F: Fn(Vec<SoftPoint>) -> T,
{
test_empty(&from_iter);
test_pythagorean(&from_iter);
diff --git a/src/frontier.rs b/src/frontier.rs
index 40b1d35..3ca6707 100644
--- a/src/frontier.rs
+++ b/src/frontier.rs
@@ -5,7 +5,7 @@ pub mod mean;
pub mod min;
use crate::color::Rgb8;
-use crate::soft::SoftDelete;
+use crate::forest::SoftDelete;
use acap::coords::Coordinates;
use acap::distance::{Proximity, Metric};
diff --git a/src/frontier/image.rs b/src/frontier/image.rs
index ded0cbe..149a1b0 100644
--- a/src/frontier/image.rs
+++ b/src/frontier/image.rs
@@ -3,7 +3,7 @@
use super::{Frontier, Pixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::soft::SoftKdTree;
+use crate::forest::KdForest;
use acap::knn::NearestNeighbors;
@@ -12,7 +12,7 @@ use image::RgbImage;
/// A [Frontier] that places colors on the closest pixel of a target image.
#[derive(Debug)]
pub struct ImageFrontier<C> {
- nodes: SoftKdTree<Pixel<C>>,
+ nodes: KdForest<Pixel<C>>,
width: u32,
height: u32,
len: usize,
diff --git a/src/frontier/mean.rs b/src/frontier/mean.rs
index 30443c9..9ccfe7e 100644
--- a/src/frontier/mean.rs
+++ b/src/frontier/mean.rs
@@ -3,7 +3,7 @@
use super::{neighbors, Frontier, RcPixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::soft::SoftKdForest;
+use crate::forest::KdForest;
use acap::knn::NearestNeighbors;
@@ -33,7 +33,7 @@ where
#[derive(Debug)]
pub struct MeanFrontier<C> {
pixels: Vec<MeanPixel<C>>,
- forest: SoftKdForest<RcPixel<C>>,
+ forest: KdForest<RcPixel<C>>,
width: u32,
height: u32,
len: usize,
@@ -114,12 +114,6 @@ where
self.len += pixels.len();
self.forest.extend(pixels);
-
- if 2 * self.deleted >= self.len {
- self.forest.rebuild();
- self.len -= self.deleted;
- self.deleted = 0;
- }
}
}
diff --git a/src/frontier/min.rs b/src/frontier/min.rs
index da08746..2a332e6 100644
--- a/src/frontier/min.rs
+++ b/src/frontier/min.rs
@@ -3,7 +3,7 @@
use super::{neighbors, Frontier, RcPixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::soft::SoftKdForest;
+use crate::forest::KdForest;
use acap::knn::NearestNeighbors;
@@ -33,7 +33,7 @@ where
pub struct MinFrontier<C, R> {
rng: R,
pixels: Vec<MinPixel<C>>,
- forest: SoftKdForest<RcPixel<C>>,
+ forest: KdForest<RcPixel<C>>,
width: u32,
height: u32,
x0: u32,
@@ -57,7 +57,7 @@ where
Self {
rng,
pixels,
- forest: SoftKdForest::new(),
+ forest: KdForest::new(),
width,
height,
x0,
@@ -118,12 +118,6 @@ where
}
}
- if 2 * self.deleted >= self.len {
- self.forest.rebuild();
- self.len -= self.deleted;
- self.deleted = 0;
- }
-
Some((x, y))
}
}
diff --git a/src/main.rs b/src/main.rs
index 204a582..c139ee8 100644
--- a/src/main.rs
+++ b/src/main.rs
@@ -2,7 +2,6 @@ pub mod color;
pub mod forest;
pub mod frontier;
pub mod hilbert;
-pub mod soft;
use crate::color::source::{AllColors, ColorSource, ImageColors};
use crate::color::{order, ColorSpace, LabSpace, LuvSpace, OklabSpace, Rgb8, RgbSpace};
diff --git a/src/soft.rs b/src/soft.rs
deleted file mode 100644
index 4ce4204..0000000
--- a/src/soft.rs
+++ /dev/null
@@ -1,288 +0,0 @@
-//! [Soft deletion](https://en.wiktionary.org/wiki/soft_deletion) for nearest neighbor search.
-
-use super::forest::{KdForest, VpForest};
-
-use acap::distance::Proximity;
-use acap::kd::FlatKdTree;
-use acap::knn::{NearestNeighbors, Neighborhood};
-use acap::vp::FlatVpTree;
-
-use std::iter;
-use std::mem;
-
-/// A trait for objects that can be soft-deleted.
-pub trait SoftDelete {
- /// Check whether this item is deleted.
- fn is_deleted(&self) -> bool;
-}
-
-/// Blanket [SoftDelete] implementation for references.
-impl<'a, T: SoftDelete> SoftDelete for &'a T {
- fn is_deleted(&self) -> bool {
- (*self).is_deleted()
- }
-}
-
-/// [Neighborhood] wrapper that ignores soft-deleted items.
-#[derive(Debug)]
-struct SoftNeighborhood<N>(N);
-
-impl<K, V, N> Neighborhood<K, V> for SoftNeighborhood<N>
-where
- V: SoftDelete,
- K: Proximity<V>,
- N: Neighborhood<K, V>,
-{
- fn target(&self) -> K {
- self.0.target()
- }
-
- fn contains<D>(&self, distance: D) -> bool
- where
- D: PartialOrd<K::Distance>
- {
- self.0.contains(distance)
- }
-
- fn consider(&mut self, item: V) -> K::Distance {
- if item.is_deleted() {
- self.target().distance(&item)
- } else {
- self.0.consider(item)
- }
- }
-}
-
-/// A [NearestNeighbors] implementation that supports [soft deletes](https://en.wiktionary.org/wiki/soft_deletion).
-#[derive(Debug)]
-pub struct SoftSearch<T>(T);
-
-impl<T, U> SoftSearch<U>
-where
- T: SoftDelete,
- U: FromIterator<T> + IntoIterator<Item = T>,
-{
- /// Create a new empty soft index.
- pub fn new() -> Self {
- Self(iter::empty().collect())
- }
-
- /// Push a new item into this index.
- pub fn push(&mut self, item: T)
- where
- U: Extend<T>,
- {
- self.0.extend(iter::once(item));
- }
-
- /// Rebuild this index, discarding deleted items.
- pub fn rebuild(&mut self) {
- let items = mem::replace(&mut self.0, iter::empty().collect());
- self.0 = items.into_iter().filter(|e| !e.is_deleted()).collect();
- }
-}
-
-impl<T, U> Default for SoftSearch<U>
-where
- T: SoftDelete,
- U: FromIterator<T> + IntoIterator<Item = T>,
-{
- fn default() -> Self {
- Self::new()
- }
-}
-
-impl<T, U: Extend<T>> Extend<T> for SoftSearch<U> {
- fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- self.0.extend(iter);
- }
-}
-
-impl<T, U: FromIterator<T>> FromIterator<T> for SoftSearch<U> {
- fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
- Self(U::from_iter(iter))
- }
-}
-
-impl<T: IntoIterator> IntoIterator for SoftSearch<T> {
- type Item = T::Item;
- type IntoIter = T::IntoIter;
-
- fn into_iter(self) -> Self::IntoIter {
- self.0.into_iter()
- }
-}
-
-impl<K, V, T> NearestNeighbors<K, V> for SoftSearch<T>
-where
- K: Proximity<V>,
- V: SoftDelete,
- T: NearestNeighbors<K, V>,
-{
- fn search<'k, 'v, N>(&'v self, neighborhood: N) -> N
- where
- K: 'k,
- V: 'v,
- N: Neighborhood<&'k K, &'v V>
- {
- self.0.search(SoftNeighborhood(neighborhood)).0
- }
-}
-
-/// A k-d forest that supports soft deletes.
-pub type SoftKdForest<T> = SoftSearch<KdForest<T>>;
-
-/// A k-d tree that supports soft deletes.
-pub type SoftKdTree<T> = SoftSearch<FlatKdTree<T>>;
-
-/// A VP forest that supports soft deletes.
-pub type SoftVpForest<T> = SoftSearch<VpForest<T>>;
-
-/// A VP tree that supports soft deletes.
-pub type SoftVpTree<T> = SoftSearch<FlatVpTree<T>>;
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- use acap::coords::Coordinates;
- use acap::euclid::{euclidean_distance, Euclidean, EuclideanDistance};
- use acap::knn::Neighbor;
-
- type Point = Euclidean<[f32; 3]>;
-
- #[derive(Debug, PartialEq)]
- struct SoftPoint {
- point: [f32; 3],
- deleted: bool,
- }
-
- impl SoftPoint {
- fn new(x: f32, y: f32, z: f32) -> Self {
- Self {
- point: [x, y, z],
- deleted: false,
- }
- }
-
- fn deleted(x: f32, y: f32, z: f32) -> Self {
- Self {
- point: [x, y, z],
- deleted: true,
- }
- }
- }
-
- impl SoftDelete for SoftPoint {
- fn is_deleted(&self) -> bool {
- self.deleted
- }
- }
-
- impl Proximity for SoftPoint {
- type Distance = EuclideanDistance<f32>;
-
- fn distance(&self, other: &Self) -> Self::Distance {
- euclidean_distance(&self.point, &other.point)
- }
- }
-
- impl Coordinates for SoftPoint {
- type Value = <Point as Coordinates>::Value;
-
- fn dims(&self) -> usize {
- self.point.dims()
- }
-
- fn coord(&self, i: usize) -> Self::Value {
- self.point.coord(i)
- }
- }
-
- impl Proximity<SoftPoint> for Point {
- type Distance = EuclideanDistance<f32>;
-
- fn distance(&self, other: &SoftPoint) -> Self::Distance {
- euclidean_distance(&self, &other.point)
- }
- }
-
- fn test_index<T>(index: &T)
- where
- T: NearestNeighbors<Point, SoftPoint>,
- {
- let target = Euclidean([0.0, 0.0, 0.0]);
-
- assert_eq!(
- index.nearest(&target).expect("No nearest neighbor found"),
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
- );
-
- assert_eq!(index.nearest_within(&target, 2.0), None);
- assert_eq!(
- index.nearest_within(&target, 4.0).expect("No nearest neighbor found within 4.0"),
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
- );
-
- assert_eq!(
- index.k_nearest(&target, 3),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
- ]
- );
-
- assert_eq!(
- index.k_nearest_within(&target, 3, 6.0),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- ]
- );
- assert_eq!(
- index.k_nearest_within(&target, 3, 8.0),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
- ]
- );
- }
-
- fn test_soft_index<T>(index: &mut SoftSearch<T>)
- where
- T: Extend<SoftPoint>,
- T: FromIterator<SoftPoint>,
- T: IntoIterator<Item = SoftPoint>,
- T: NearestNeighbors<Point, SoftPoint>,
- {
- let points = vec![
- SoftPoint::deleted(0.0, 0.0, 0.0),
- SoftPoint::new(3.0, 4.0, 0.0),
- SoftPoint::new(5.0, 0.0, 12.0),
- SoftPoint::new(0.0, 8.0, 15.0),
- SoftPoint::new(1.0, 2.0, 2.0),
- SoftPoint::new(2.0, 3.0, 6.0),
- SoftPoint::new(4.0, 4.0, 7.0),
- ];
-
- for point in points {
- index.push(point);
- }
- test_index(index);
-
- index.rebuild();
- test_index(index);
- }
-
- #[test]
- fn test_soft_kd_forest() {
- test_soft_index(&mut SoftKdForest::new());
- }
-
- #[test]
- fn test_soft_vp_forest() {
- test_soft_index(&mut SoftVpForest::new());
- }
-}