diff options
Diffstat (limited to 'src/forest.rs')
-rw-r--r-- | src/forest.rs | 292 |
1 files changed, 292 insertions, 0 deletions
diff --git a/src/forest.rs b/src/forest.rs new file mode 100644 index 0000000..56dff7e --- /dev/null +++ b/src/forest.rs @@ -0,0 +1,292 @@ +//! [Dynamization](https://en.wikipedia.org/wiki/Dynamization) for nearest neighbor search. + +use acap::distance::Proximity; +use acap::kd::FlatKdTree; +use acap::vp::FlatVpTree; +use acap::{NearestNeighbors, Neighborhood}; + +use std::iter::{self, Extend, FromIterator}; + +/// The number of bits dedicated to the flat buffer. +const BUFFER_BITS: usize = 6; +/// The maximum size of the buffer. +const BUFFER_SIZE: usize = 1 << BUFFER_BITS; + +/// A dynamic wrapper for a static nearest neighbor search data structure. +/// +/// This type applies [dynamization](https://en.wikipedia.org/wiki/Dynamization) to an arbitrary +/// nearest neighbor search structure `T`, allowing new items to be added dynamically. +#[derive(Debug)] +pub struct Forest<T: IntoIterator> { + /// A flat buffer used for the first few items, to avoid repeatedly rebuilding small trees. + buffer: Vec<T::Item>, + /// The trees of the forest, with sizes in geometric progression. + trees: Vec<Option<T>>, +} + +impl<T, U> Forest<U> +where + U: FromIterator<T> + IntoIterator<Item = T>, +{ + /// Create a new empty forest. + pub fn new() -> Self { + Self { + buffer: Vec::new(), + trees: Vec::new(), + } + } + + /// Add a new item to the forest. + pub fn push(&mut self, item: T) { + self.extend(iter::once(item)); + } + + /// Get the number of items in the forest. + pub fn len(&self) -> usize { + let mut len = self.buffer.len(); + for (i, slot) in self.trees.iter().enumerate() { + if slot.is_some() { + len += 1 << (i + BUFFER_BITS); + } + } + len + } + + /// Check if this forest is empty. + pub fn is_empty(&self) -> bool { + if !self.buffer.is_empty() { + return false; + } + + self.trees.iter().flatten().next().is_none() + } +} + +impl<T, U> Default for Forest<U> +where + U: FromIterator<T> + IntoIterator<Item = T>, +{ + fn default() -> Self { + Self::new() + } +} + +impl<T, U> Extend<T> for Forest<U> +where + U: FromIterator<T> + IntoIterator<Item = T>, +{ + fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) { + self.buffer.extend(items); + if self.buffer.len() < BUFFER_SIZE { + return; + } + + let len = self.len(); + + for i in 0.. { + let bit = 1 << (i + BUFFER_BITS); + + if bit > len { + break; + } + + if i >= self.trees.len() { + self.trees.push(None); + } + + if len & bit == 0 { + if let Some(tree) = self.trees[i].take() { + self.buffer.extend(tree); + } + } else if self.trees[i].is_none() { + let offset = self.buffer.len() - bit; + self.trees[i] = Some(self.buffer.drain(offset..).collect()); + } + } + + debug_assert!(self.buffer.len() < BUFFER_SIZE); + debug_assert!(self.len() == len); + } +} + +impl<T, U> FromIterator<T> for Forest<U> +where + U: FromIterator<T> + IntoIterator<Item = T>, +{ + fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self { + let mut forest = Self::new(); + forest.extend(items); + forest + } +} + +impl<T: IntoIterator> IntoIterator for Forest<T> { + type Item = T::Item; + type IntoIter = std::vec::IntoIter<T::Item>; + + fn into_iter(mut self) -> Self::IntoIter { + self.buffer.extend(self.trees.into_iter().flatten().flatten()); + self.buffer.into_iter() + } +} + +impl<K, V, T> NearestNeighbors<K, V> for Forest<T> +where + K: Proximity<V>, + T: NearestNeighbors<K, V>, + T: IntoIterator<Item = V>, +{ + fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N + where + K: 'k, + V: 'v, + N: Neighborhood<&'k K, &'v V> + { + for item in &self.buffer { + neighborhood.consider(item); + } + + self.trees + .iter() + .flatten() + .fold(neighborhood, |n, t| t.search(n)) + } +} + +/// A forest of k-d trees. +pub type KdForest<T> = Forest<FlatKdTree<T>>; + +/// A forest of vantage-point trees. +pub type VpForest<T> = Forest<FlatVpTree<T>>; + +#[cfg(test)] +mod tests { + use super::*; + + use acap::euclid::Euclidean; + use acap::exhaustive::ExhaustiveSearch; + use acap::{NearestNeighbors, Neighbor}; + + use rand::prelude::*; + + type Point = Euclidean<[f32; 3]>; + + fn test_empty<T, F>(from_iter: &F) + where + T: NearestNeighbors<Point>, + F: Fn(Vec<Point>) -> T, + { + let points = Vec::new(); + let index = from_iter(points); + let target = Euclidean([0.0, 0.0, 0.0]); + assert_eq!(index.nearest(&target), None); + assert_eq!(index.nearest_within(&target, 1.0), None); + assert!(index.k_nearest(&target, 0).is_empty()); + assert!(index.k_nearest(&target, 3).is_empty()); + assert!(index.k_nearest_within(&target, 0, 1.0).is_empty()); + assert!(index.k_nearest_within(&target, 3, 1.0).is_empty()); + } + + fn test_pythagorean<T, F>(from_iter: &F) + where + T: NearestNeighbors<Point>, + F: Fn(Vec<Point>) -> T, + { + let points = vec![ + Euclidean([3.0, 4.0, 0.0]), + Euclidean([5.0, 0.0, 12.0]), + Euclidean([0.0, 8.0, 15.0]), + Euclidean([1.0, 2.0, 2.0]), + Euclidean([2.0, 3.0, 6.0]), + Euclidean([4.0, 4.0, 7.0]), + ]; + let index = from_iter(points); + let target = Euclidean([0.0, 0.0, 0.0]); + + assert_eq!( + index.nearest(&target).expect("No nearest neighbor found"), + Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0) + ); + + assert_eq!(index.nearest_within(&target, 2.0), None); + assert_eq!( + index.nearest_within(&target, 4.0).expect("No nearest neighbor found within 4.0"), + Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0) + ); + + assert!(index.k_nearest(&target, 0).is_empty()); + assert_eq!( + index.k_nearest(&target, 3), + vec![ + Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0), + Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0), + Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0), + ] + ); + + assert!(index.k_nearest(&target, 0).is_empty()); + assert_eq!( + index.k_nearest_within(&target, 3, 6.0), + vec![ + Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0), + Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0), + ] + ); + assert_eq!( + index.k_nearest_within(&target, 3, 8.0), + vec![ + Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0), + Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0), + Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0), + ] + ); + } + + fn test_random_points<T, F>(from_iter: &F) + where + T: NearestNeighbors<Point>, + F: Fn(Vec<Point>) -> T, + { + let mut points = Vec::new(); + for _ in 0..255 { + points.push(Euclidean([random(), random(), random()])); + } + let target = Euclidean([random(), random(), random()]); + + let eindex = ExhaustiveSearch::from_iter(points.clone()); + let index = from_iter(points); + + assert_eq!(index.k_nearest(&target, 3), eindex.k_nearest(&target, 3)); + } + + /// Test a [NearestNeighbors] impl. + fn test_nearest_neighbors<T, F>(from_iter: F) + where + T: NearestNeighbors<Point>, + F: Fn(Vec<Point>) -> T, + { + test_empty(&from_iter); + test_pythagorean(&from_iter); + test_random_points(&from_iter); + } + + #[test] + fn test_exhaustive_forest() { + test_nearest_neighbors(Forest::<ExhaustiveSearch<_>>::from_iter); + } + + #[test] + fn test_forest_forest() { + test_nearest_neighbors(Forest::<Forest<ExhaustiveSearch<_>>>::from_iter); + } + + #[test] + fn test_kd_forest() { + test_nearest_neighbors(KdForest::from_iter); + } + + #[test] + fn test_vp_forest() { + test_nearest_neighbors(VpForest::from_iter); + } +} |