diff options
Diffstat (limited to 'color.c')
-rw-r--r-- | color.c | 67 |
1 files changed, 51 insertions, 16 deletions
@@ -11,7 +11,6 @@ #include "color.h" #include <math.h> -#define PI 3.1415926535897932 void color_unpack(uint8_t pixel[3], uint32_t color) @@ -119,23 +118,59 @@ color_set_Luv(double coords[3], uint32_t color) coords[2] = 13.0*coords[0]*(vprime - vnprime); } -static double -hue(uint32_t color) +int +color_comparator(const void *a, const void *b) { - double RGB[3]; - color_set_RGB(RGB, color); + double aRGB[3], bRGB[3]; + color_set_RGB(aRGB, *(uint32_t *)a); + color_set_RGB(bRGB, *(uint32_t *)b); + + double anum = aRGB[1] - aRGB[2], adenom = 2*aRGB[0] - aRGB[1] - aRGB[2]; + double bnum = bRGB[1] - bRGB[2], bdenom = 2*bRGB[0] - bRGB[1] - bRGB[2]; + + // The hue angle is defined as atan2(sqrt(3)*n/d) (+ 2*pi if negative). But + // since atan2() is expensive, we compute an equivalent ordering while + // avoiding trig calls. First, handle the quadrants. We have: + // + // hue(n, d) + // | d >= 0 && n == 0 = 0 + // | d >= 0 && n > 0 = atan(n/d) + // | d >= 0 && n < 0 = atan(n/d) + 2*pi + // | d < 0 = atan(n/d) + pi + // + // and since atan(n/d)'s range is [-pi/2, pi/2], each chunk can be strictly + // ordered relative to the other chunks. + if (adenom >= 0.0) { + if (anum >= 0.0) { + if (bdenom < 0.0 || bnum < 0.0) { + return -1; + } + } else { + if (bdenom < 0.0 || bnum >= 0.0) { + return 1; + } + } + } else if (bdenom >= 0.0) { + if (bnum >= 0.0) { + return 1; + } else { + return -1; + } + } - double hue = atan2(sqrt(3.0)*(RGB[1] - RGB[2]), 2*RGB[0] - RGB[1] - RGB[2]); - if (hue < 0.0) { - hue += 2.0*PI; + // Special-case zero numerators, because we treat 0/0 as 0, not NaN + if (anum == 0.0 || bnum == 0.0) { + double lhs = anum*adenom; + double rhs = bnum*bdenom; + return (lhs > rhs) - (lhs < rhs); } - return hue; -} -int -color_comparator(const void *a, const void *b) -{ - double ahue = hue(*(uint32_t *)a); - double bhue = hue(*(uint32_t *)b); - return (ahue > bhue) - (ahue < bhue); + // The points are in the same/comparable quadrants. We can still avoid + // calculating atan(n/d) though, because it's an increasing function in n/d. + // We can also avoid a division, by noting that an/ad < bn/bd iff + // an*bd*sgn(ad*bd) < bn*ad*sgn(ad*bd). Due to the logic above, both sides of + // the equation must have the same sign, so the sgn()s are redundant. + double lhs = anum*bdenom; + double rhs = bnum*adenom; + return (lhs > rhs) - (lhs < rhs); } |