summaryrefslogtreecommitdiffstats
path: root/src/metric/soft.rs
diff options
context:
space:
mode:
authorTavian Barnes <tavianator@tavianator.com>2020-06-24 15:20:02 -0400
committerTavian Barnes <tavianator@tavianator.com>2020-06-24 15:44:14 -0400
commit39c0348c9f98b4dd29bd112a0a2a42faa67c92d4 (patch)
tree6c8ed80bd8cbbb0af79c9ac57bdb39634fa178fd /src/metric/soft.rs
parentadaafdd7043507cbceae65e78c38954e47103b5c (diff)
downloadkd-forest-39c0348c9f98b4dd29bd112a0a2a42faa67c92d4.tar.xz
Use the acap nearest neighbors implementationHEADmaster
Diffstat (limited to 'src/metric/soft.rs')
-rw-r--r--src/metric/soft.rs292
1 files changed, 0 insertions, 292 deletions
diff --git a/src/metric/soft.rs b/src/metric/soft.rs
deleted file mode 100644
index d443bfd..0000000
--- a/src/metric/soft.rs
+++ /dev/null
@@ -1,292 +0,0 @@
-//! [Soft deletion](https://en.wiktionary.org/wiki/soft_deletion) for nearest neighbor search.
-
-use super::forest::{KdForest, VpForest};
-use super::kd::KdTree;
-use super::vp::VpTree;
-use super::{Metric, NearestNeighbors, Neighborhood};
-
-use std::iter;
-use std::iter::FromIterator;
-use std::mem;
-
-/// A trait for objects that can be soft-deleted.
-pub trait SoftDelete {
- /// Check whether this item is deleted.
- fn is_deleted(&self) -> bool;
-}
-
-/// Blanket [SoftDelete] implementation for references.
-impl<'a, T: SoftDelete> SoftDelete for &'a T {
- fn is_deleted(&self) -> bool {
- (*self).is_deleted()
- }
-}
-
-/// [Neighborhood] wrapper that ignores soft-deleted items.
-#[derive(Debug)]
-struct SoftNeighborhood<N>(N);
-
-impl<T, U, N> Neighborhood<T, U> for SoftNeighborhood<N>
-where
- T: SoftDelete,
- U: Metric<T>,
- N: Neighborhood<T, U>,
-{
- fn target(&self) -> U {
- self.0.target()
- }
-
- fn contains(&self, distance: f64) -> bool {
- self.0.contains(distance)
- }
-
- fn contains_distance(&self, distance: U::Distance) -> bool {
- self.0.contains_distance(distance)
- }
-
- fn consider(&mut self, item: T) -> U::Distance {
- if item.is_deleted() {
- self.target().distance(&item)
- } else {
- self.0.consider(item)
- }
- }
-}
-
-/// A [NearestNeighbors] implementation that supports [soft deletes](https://en.wiktionary.org/wiki/soft_deletion).
-#[derive(Debug)]
-pub struct SoftSearch<T>(T);
-
-impl<T, U> SoftSearch<U>
-where
- T: SoftDelete,
- U: FromIterator<T> + IntoIterator<Item = T>,
-{
- /// Create a new empty soft index.
- pub fn new() -> Self {
- Self(iter::empty().collect())
- }
-
- /// Push a new item into this index.
- pub fn push(&mut self, item: T)
- where
- U: Extend<T>,
- {
- self.0.extend(iter::once(item));
- }
-
- /// Rebuild this index, discarding deleted items.
- pub fn rebuild(&mut self) {
- let items = mem::replace(&mut self.0, iter::empty().collect());
- self.0 = items.into_iter().filter(|e| !e.is_deleted()).collect();
- }
-}
-
-impl<T, U> Default for SoftSearch<U>
-where
- T: SoftDelete,
- U: FromIterator<T> + IntoIterator<Item = T>,
-{
- fn default() -> Self {
- Self::new()
- }
-}
-
-impl<T, U: Extend<T>> Extend<T> for SoftSearch<U> {
- fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- self.0.extend(iter);
- }
-}
-
-impl<T, U: FromIterator<T>> FromIterator<T> for SoftSearch<U> {
- fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
- Self(U::from_iter(iter))
- }
-}
-
-impl<T: IntoIterator> IntoIterator for SoftSearch<T> {
- type Item = T::Item;
- type IntoIter = T::IntoIter;
-
- fn into_iter(self) -> Self::IntoIter {
- self.0.into_iter()
- }
-}
-
-impl<T, U, V> NearestNeighbors<T, U> for SoftSearch<V>
-where
- T: SoftDelete,
- U: Metric<T>,
- V: NearestNeighbors<T, U>,
-{
- fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
- {
- self.0.search(SoftNeighborhood(neighborhood)).0
- }
-}
-
-/// A k-d forest that supports soft deletes.
-pub type SoftKdForest<T> = SoftSearch<KdForest<T>>;
-
-/// A k-d tree that supports soft deletes.
-pub type SoftKdTree<T> = SoftSearch<KdTree<T>>;
-
-/// A VP forest that supports soft deletes.
-pub type SoftVpForest<T> = SoftSearch<VpForest<T>>;
-
-/// A VP tree that supports soft deletes.
-pub type SoftVpTree<T> = SoftSearch<VpTree<T>>;
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- use crate::metric::kd::Cartesian;
- use crate::metric::tests::Point;
- use crate::metric::Neighbor;
-
- #[derive(Debug, PartialEq)]
- struct SoftPoint {
- point: Point,
- deleted: bool,
- }
-
- impl SoftPoint {
- fn new(x: f64, y: f64, z: f64) -> Self {
- Self {
- point: Point([x, y, z]),
- deleted: false,
- }
- }
-
- fn deleted(x: f64, y: f64, z: f64) -> Self {
- Self {
- point: Point([x, y, z]),
- deleted: true,
- }
- }
- }
-
- impl SoftDelete for SoftPoint {
- fn is_deleted(&self) -> bool {
- self.deleted
- }
- }
-
- impl Metric for SoftPoint {
- type Distance = <Point as Metric>::Distance;
-
- fn distance(&self, other: &Self) -> Self::Distance {
- self.point.distance(&other.point)
- }
- }
-
- impl Metric<[f64]> for SoftPoint {
- type Distance = <Point as Metric>::Distance;
-
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.point.distance(other)
- }
- }
-
- impl Cartesian for SoftPoint {
- fn dimensions(&self) -> usize {
- self.point.dimensions()
- }
-
- fn coordinate(&self, i: usize) -> f64 {
- self.point.coordinate(i)
- }
- }
-
- impl Metric<SoftPoint> for Point {
- type Distance = <Point as Metric>::Distance;
-
- fn distance(&self, other: &SoftPoint) -> Self::Distance {
- self.distance(&other.point)
- }
- }
-
- fn test_index<T>(index: &T)
- where
- T: NearestNeighbors<SoftPoint, Point>,
- {
- let target = Point([0.0, 0.0, 0.0]);
-
- assert_eq!(
- index.nearest(&target),
- Some(Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0))
- );
-
- assert_eq!(index.nearest_within(&target, 2.0), None);
- assert_eq!(
- index.nearest_within(&target, 4.0),
- Some(Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0))
- );
-
- assert_eq!(
- index.k_nearest(&target, 3),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
- ]
- );
-
- assert_eq!(
- index.k_nearest_within(&target, 3, 6.0),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- ]
- );
- assert_eq!(
- index.k_nearest_within(&target, 3, 8.0),
- vec![
- Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0),
- Neighbor::new(&SoftPoint::new(3.0, 4.0, 0.0), 5.0),
- Neighbor::new(&SoftPoint::new(2.0, 3.0, 6.0), 7.0),
- ]
- );
- }
-
- fn test_soft_index<T>(index: &mut SoftSearch<T>)
- where
- T: Extend<SoftPoint>,
- T: FromIterator<SoftPoint>,
- T: IntoIterator<Item = SoftPoint>,
- T: NearestNeighbors<SoftPoint, Point>,
- {
- let points = vec![
- SoftPoint::deleted(0.0, 0.0, 0.0),
- SoftPoint::new(3.0, 4.0, 0.0),
- SoftPoint::new(5.0, 0.0, 12.0),
- SoftPoint::new(0.0, 8.0, 15.0),
- SoftPoint::new(1.0, 2.0, 2.0),
- SoftPoint::new(2.0, 3.0, 6.0),
- SoftPoint::new(4.0, 4.0, 7.0),
- ];
-
- for point in points {
- index.push(point);
- }
- test_index(index);
-
- index.rebuild();
- test_index(index);
- }
-
- #[test]
- fn test_soft_kd_forest() {
- test_soft_index(&mut SoftKdForest::new());
- }
-
- #[test]
- fn test_soft_vp_forest() {
- test_soft_index(&mut SoftVpForest::new());
- }
-}