1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/*************************************************************************
* Copyright (C) 2010-2014 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Priority R-tree implementation.
*/
#include "dimension-internal.h"
#include <stdlib.h>
/// Number of children per PR-node.
#define DMNSN_PRTREE_B 8
/// Number of priority leaves per pseudo-PR-node (must be 2*ndimensions).
#define DMNSN_PSEUDO_B 6
/// The side of the split that a node ended up on.
typedef enum dmnsn_prnode_location {
DMNSN_PRTREE_LEAF, ///< Priority leaf.
DMNSN_PRTREE_LEFT, ///< Left child.
DMNSN_PRTREE_RIGHT ///< Right child.
} dmnsn_prnode_location;
/// Construct an empty PR-node.
static inline dmnsn_bvh_node *
dmnsn_new_prnode(void)
{
dmnsn_bvh_node *node = dmnsn_new_bvh_node(DMNSN_PRTREE_B);
node->data = DMNSN_PRTREE_LEFT; // Mustn't be _LEAF
return node;
}
/// Comparator types.
enum {
DMNSN_XMIN,
DMNSN_YMIN,
DMNSN_ZMIN,
DMNSN_XMAX,
DMNSN_YMAX,
DMNSN_ZMAX
};
// List sorting comparators
static int
dmnsn_xmin_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.min.x;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.min.x;
return (lval > rval) - (lval < rval);
}
static int
dmnsn_ymin_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.min.y;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.min.y;
return (lval > rval) - (lval < rval);
}
static int
dmnsn_zmin_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.min.z;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.min.z;
return (lval > rval) - (lval < rval);
}
static int
dmnsn_xmax_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.max.x;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.max.x;
return (lval < rval) - (lval > rval);
}
static int
dmnsn_ymax_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.max.y;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.max.y;
return (lval < rval) - (lval > rval);
}
static int
dmnsn_zmax_comp(const void *l, const void *r)
{
double lval = (*(const dmnsn_bvh_node **)l)->bounding_box.max.z;
double rval = (*(const dmnsn_bvh_node **)r)->bounding_box.max.z;
return (lval < rval) - (lval > rval);
}
/// All comparators.
static dmnsn_array_comparator_fn *const dmnsn_comparators[DMNSN_PSEUDO_B] = {
[DMNSN_XMIN] = dmnsn_xmin_comp,
[DMNSN_YMIN] = dmnsn_ymin_comp,
[DMNSN_ZMIN] = dmnsn_zmin_comp,
[DMNSN_XMAX] = dmnsn_xmax_comp,
[DMNSN_YMAX] = dmnsn_ymax_comp,
[DMNSN_ZMAX] = dmnsn_zmax_comp,
};
/// Add the priority leaves for this level.
static void
dmnsn_add_priority_leaves(dmnsn_bvh_node **sorted_leaves[DMNSN_PSEUDO_B],
size_t nleaves,
dmnsn_array *new_leaves)
{
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
dmnsn_bvh_node *leaf = NULL;
dmnsn_bvh_node **leaves = sorted_leaves[i];
for (size_t j = 0;
j < nleaves && (!leaf || leaf->nchildren < DMNSN_PRTREE_B);
++j)
{
// Skip all the previously found extreme nodes
if (leaves[j]->data == DMNSN_PRTREE_LEAF) {
continue;
}
if (!leaf) {
leaf = dmnsn_new_prnode();
}
leaves[j]->data = DMNSN_PRTREE_LEAF;
dmnsn_bvh_node_add(leaf, leaves[j]);
}
if (leaf) {
dmnsn_array_push(new_leaves, &leaf);
} else {
return;
}
}
}
static void
dmnsn_split_sorted_leaves_easy(dmnsn_bvh_node **leaves,
size_t *nleaves,
size_t *nright_leaves)
{
// Get rid of the extreme nodes
size_t i, skip, size = *nleaves;
for (i = 0, skip = 0; i < size; ++i) {
if (leaves[i]->data == DMNSN_PRTREE_LEAF) {
++skip;
} else {
leaves[i - skip] = leaves[i];
}
}
size -= skip;
// Split the leaves and mark the left and right child nodes
size_t left_size = (size + 1)/2;
for (i = 0; i < left_size; ++i) {
leaves[i]->data = DMNSN_PRTREE_LEFT;
}
for (i = left_size; i < size; ++i) {
leaves[i]->data = DMNSN_PRTREE_RIGHT;
}
*nleaves = left_size;
*nright_leaves = size - left_size;
}
static void
dmnsn_split_sorted_leaves_hard(dmnsn_bvh_node **leaves,
dmnsn_bvh_node **buffer,
size_t nleaves)
{
size_t i, j, skip;
for (i = 0, j = 0, skip = 0; i < nleaves; ++i) {
if (leaves[i]->data == DMNSN_PRTREE_LEFT) {
leaves[i - skip] = leaves[i];
} else {
if (leaves[i]->data == DMNSN_PRTREE_RIGHT) {
buffer[j] = leaves[i];
++j;
}
++skip;
}
}
size_t left_size = i - skip;
for (i = 0; i < j; ++i) {
leaves[left_size + i] = buffer[i];
}
}
/// Split the sorted lists into the left and right subtrees.
static void
dmnsn_split_sorted_leaves(dmnsn_bvh_node **sorted_leaves[DMNSN_PSEUDO_B],
size_t *nleaves,
dmnsn_bvh_node **right_sorted_leaves[DMNSN_PSEUDO_B],
size_t *nright_leaves,
dmnsn_bvh_node **buffer,
size_t i)
{
size_t original_size = *nleaves;
// Split the ith list
dmnsn_split_sorted_leaves_easy(sorted_leaves[i], nleaves, nright_leaves);
// Split the rest of the lists
for (size_t j = 0; j < DMNSN_PSEUDO_B; ++j) {
right_sorted_leaves[j] = sorted_leaves[j] + *nleaves;
if (j == i) {
continue;
}
dmnsn_split_sorted_leaves_hard(sorted_leaves[j], buffer, original_size);
}
}
/// Recursively constructs an implicit pseudo-PR-tree and collects the priority
/// leaves.
static void
dmnsn_priority_leaves_recursive(dmnsn_bvh_node **sorted_leaves[DMNSN_PSEUDO_B],
size_t nleaves,
dmnsn_bvh_node **buffer,
dmnsn_array *new_leaves,
int comparator)
{
dmnsn_add_priority_leaves(sorted_leaves, nleaves, new_leaves);
dmnsn_bvh_node **right_sorted_leaves[DMNSN_PSEUDO_B];
size_t right_nleaves;
dmnsn_split_sorted_leaves(sorted_leaves, &nleaves,
right_sorted_leaves, &right_nleaves,
buffer, comparator);
if (nleaves > 0) {
dmnsn_priority_leaves_recursive(sorted_leaves, nleaves,
buffer, new_leaves,
(comparator + 1)%DMNSN_PSEUDO_B);
}
if (right_nleaves > 0) {
dmnsn_priority_leaves_recursive(right_sorted_leaves, right_nleaves,
buffer, new_leaves,
(comparator + 1)%DMNSN_PSEUDO_B);
}
}
/// Sort each dimension in parallel with more than this many leaves.
#define DMNSN_PARALLEL_SORT_THRESHOLD 1024
typedef struct {
dmnsn_bvh_node **leaves_arr;
dmnsn_bvh_node ***sorted_leaves;
size_t nleaves;
} dmnsn_sort_leaves_payload;
static dmnsn_bvh_node **
dmnsn_sort_leaf_array(dmnsn_bvh_node **leaves, size_t nleaves, int comparator)
{
size_t leaves_size = nleaves*sizeof(dmnsn_bvh_node *);
dmnsn_bvh_node **sorted_leaves = dmnsn_malloc(leaves_size);
memcpy(sorted_leaves, leaves, leaves_size);
qsort(sorted_leaves, nleaves, sizeof(dmnsn_bvh_node *),
dmnsn_comparators[comparator]);
return sorted_leaves;
}
static int
dmnsn_sort_leaves(void *ptr, unsigned int thread, unsigned int nthreads)
{
dmnsn_sort_leaves_payload *payload = ptr;
for (unsigned int i = thread; i < DMNSN_PSEUDO_B; i += nthreads) {
payload->sorted_leaves[i] =
dmnsn_sort_leaf_array(payload->leaves_arr, payload->nleaves, i);
}
return 0;
}
/// Constructs an implicit pseudo-PR-tree and returns the priority leaves.
static dmnsn_array *
dmnsn_priority_leaves(const dmnsn_array *leaves, unsigned int nthreads)
{
dmnsn_bvh_node **leaves_arr = dmnsn_array_first(leaves);
dmnsn_bvh_node **sorted_leaves[DMNSN_PSEUDO_B];
size_t nleaves = dmnsn_array_size(leaves);
if (nleaves >= DMNSN_PARALLEL_SORT_THRESHOLD && nthreads > 1) {
dmnsn_sort_leaves_payload payload = {
.leaves_arr = leaves_arr,
.sorted_leaves = sorted_leaves,
.nleaves = nleaves,
};
dmnsn_execute_concurrently(NULL, dmnsn_sort_leaves, &payload, nthreads);
} else {
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
sorted_leaves[i] = dmnsn_sort_leaf_array(leaves_arr, nleaves, i);
}
}
size_t buffer_size = nleaves/2;
dmnsn_bvh_node **buffer = dmnsn_malloc(buffer_size*sizeof(dmnsn_bvh_node *));
dmnsn_array *new_leaves = DMNSN_NEW_ARRAY(dmnsn_bvh_node *);
dmnsn_priority_leaves_recursive(sorted_leaves, nleaves, buffer, new_leaves,
0);
dmnsn_free(buffer);
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
dmnsn_free(sorted_leaves[i]);
}
return new_leaves;
}
dmnsn_bvh_node *
dmnsn_new_prtree(const dmnsn_array *objects)
{
if (dmnsn_array_size(objects) == 0) {
return NULL;
}
// Make the initial array of leaves
dmnsn_array *leaves = DMNSN_NEW_ARRAY(dmnsn_bvh_node *);
DMNSN_ARRAY_FOREACH (dmnsn_object **, object, objects) {
dmnsn_bvh_node *node = dmnsn_new_bvh_leaf_node(*object);
node->data = DMNSN_PRTREE_LEFT; // Mustn't be _LEAF
dmnsn_array_push(leaves, &node);
}
unsigned int ncpus = dmnsn_ncpus();
unsigned int nthreads = ncpus < DMNSN_PSEUDO_B ? ncpus : DMNSN_PSEUDO_B;
while (dmnsn_array_size(leaves) > 1) {
dmnsn_array *new_leaves = dmnsn_priority_leaves(leaves, nthreads);
dmnsn_delete_array(leaves);
leaves = new_leaves;
}
dmnsn_bvh_node *root = *(dmnsn_bvh_node **)dmnsn_array_first(leaves);
dmnsn_delete_array(leaves);
return root;
}
|