1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/*************************************************************************
* Copyright (C) 2010-2011 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Real root isolation algorithm based on work by Vincent, Uspensky, Collins and
* Akritas, Johnson, Krandick, and Rouillier and Zimmerman.
*/
#include "dimension-internal.h"
#include <math.h>
/// Get the real degree of a polynomial, ignoring leading zeros.
static inline size_t
dmnsn_real_degree(const double poly[], size_t degree)
{
for (size_t i = degree + 1; i-- > 0;) {
if (dmnsn_likely(fabs(poly[i]) >= dmnsn_epsilon)) {
return i;
}
}
return 0;
}
/// Divide each coefficient by the leading coefficient.
static inline void
dmnsn_polynomial_normalize(double poly[], size_t degree)
{
for (size_t i = 0; i < degree; ++i) {
poly[i] /= poly[degree];
}
poly[degree] = 1.0;
}
/// Eliminate trivial zero roots from \p poly[].
static inline void
dmnsn_eliminate_zero_roots(double **poly, size_t *degree)
{
size_t i;
for (i = 0; i <= *degree; ++i) {
if (dmnsn_likely(fabs((*poly)[i]) >= dmnsn_epsilon)) {
break;
}
}
*poly += i;
*degree -= i;
}
/// Calculate a finite upper bound on the roots of a normalized polynomial.
static inline double
dmnsn_root_bound(const double poly[], size_t degree)
{
double bound = fabs(poly[0]);
for (size_t i = 1; i < degree; ++i) {
bound = dmnsn_max(bound, fabs(poly[i]));
}
bound += 1.0;
return bound;
}
/// Copy a polynomial.
static inline void
dmnsn_polynomial_copy(double dest[], const double src[], size_t degree)
{
for (size_t i = 0; i <= degree; ++i) {
dest[i] = src[i];
}
}
/// Transform a polynomial by P'(x) = P(x + 1).
static inline void
dmnsn_polynomial_translate(double poly[], size_t degree)
{
for (size_t i = 0; i <= degree; ++i) {
for (size_t j = degree - i; j <= degree - 1; ++j) {
poly[j] += poly[j + 1];
}
}
}
/// Transform a polynomial by P'(x) = P(c*x).
static inline void
dmnsn_polynomial_scale(double poly[], size_t degree, double c)
{
double factor = c;
for (size_t i = 1; i <= degree; ++i) {
poly[i] *= factor;
factor *= c;
}
}
/// Returns the result of Descartes' rule on x^degree * poly(1/(x + 1)).
static size_t
dmnsn_descartes_bound(const double poly[], size_t degree)
{
// Copy the polynomial so we can be destructive
double p[degree + 1];
dmnsn_polynomial_copy(p, poly, degree);
// Calculate poly(1/(1/x + 1)) which avoids reversal
for (size_t i = 1; i <= degree; ++i) {
for (size_t j = i; j >= 1; --j) {
p[j] += p[j - 1];
}
}
// Find the number of sign changes in p[]
size_t changes = 0;
int lastsign = dmnsn_sign(p[0]);
for (size_t i = 1; changes <= 1 && i <= degree; ++i) {
int sign = dmnsn_sign(p[i]);
if (sign != 0 && sign != lastsign) {
++changes;
lastsign = sign;
}
}
return changes;
}
/// Depth-first search of possible isolating intervals.
static size_t
dmnsn_root_bounds_recursive(double poly[], size_t degree, double *c, double *k,
double bounds[][2], size_t nbounds)
{
size_t s = dmnsn_descartes_bound(poly, degree);
if (s >= 2) {
// Get the left child
dmnsn_polynomial_scale(poly, degree, 1.0/2.0);
*c *= 2.0;
*k /= 2.0;
double currc = *c, currk = *k;
// Test the left child
size_t n = dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds);
if (nbounds == n) {
return n;
}
bounds += n;
nbounds -= n;
// Get the right child from the last tested polynomial
dmnsn_polynomial_translate(poly, degree);
dmnsn_polynomial_scale(poly, degree, currk/(*k));
*c = currc + 1.0;
*k = currk;
// Test the right child
n += dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds);
return n;
} else if (s == 1) {
bounds[0][0] = (*c)*(*k);
bounds[0][1] = (*c + 1.0)*(*k);
return 1;
} else {
return 0;
}
}
/// Find ranges that contain a single root.
static size_t
dmnsn_root_bounds(const double poly[], size_t degree, double bounds[][2],
size_t nbounds)
{
// Copy the polynomial so we can be destructive
double p[degree + 1];
dmnsn_polynomial_copy(p, poly, degree);
// Scale the roots to within (0, 1]
double bound = dmnsn_root_bound(p, degree);
dmnsn_polynomial_scale(p, degree, bound);
// Bounding intervals are of the form (c*k, (c + 1)*k)
double c = 0.0, k = 1.0;
// Isolate the roots
size_t n = dmnsn_root_bounds_recursive(p, degree, &c, &k, bounds, nbounds);
// Scale the roots back to within (0, bound]
for (size_t i = 0; i < n; ++i) {
bounds[i][0] *= bound;
bounds[i][1] *= bound;
}
return n;
}
/// Maximum number of iterations in dmnsn_bisect_root() before bailout.
#define DMNSN_BISECT_ITERATIONS 64
/// Use the false position method to find a root in a range that contains
/// exactly one root.
static inline double
dmnsn_bisect_root(const double poly[], size_t degree, double min, double max)
{
double evmin = dmnsn_polynomial_evaluate(poly, degree, min);
double evmax = dmnsn_polynomial_evaluate(poly, degree, max);
// Handle equal bounds, and equal values at the bounds.
if (dmnsn_unlikely(fabs(evmax - evmin) < dmnsn_epsilon)) {
return (min + max)/2.0;
}
double evinitial = dmnsn_min(fabs(evmin), fabs(evmax));
double mid, evmid;
int lastsign = 0;
for (size_t i = 0; i < DMNSN_BISECT_ITERATIONS; ++i) {
mid = (min*evmax - max*evmin)/(evmax - evmin);
evmid = dmnsn_polynomial_evaluate(poly, degree, mid);
int sign = dmnsn_sign(evmid);
if ((fabs(evmid) < fabs(mid)*dmnsn_epsilon
// This condition improves stability when one of the bounds is close to
// a different root than we are trying to find
&& fabs(evmid) <= evinitial)
|| max - min < fabs(mid)*dmnsn_epsilon)
{
break;
}
if (mid < min) {
// This can happen due to numerical instability in the root bounding
// algorithm, so behave like the normal secant method
max = min;
evmax = evmin;
min = mid;
evmin = evmid;
} else if (mid > max) {
min = max;
evmin = evmax;
max = mid;
evmax = evmid;
} else if (sign == dmnsn_sign(evmax)) {
max = mid;
evmax = evmid;
if (sign == lastsign) {
// Don't allow the algorithm to keep the same endpoint for three
// iterations in a row; this ensures superlinear convergence
evmin /= 2.0;
}
} else {
min = mid;
evmin = evmid;
if (sign == lastsign) {
evmax /= 2.0;
}
}
lastsign = sign;
}
return mid;
}
/// Use synthetic division to eliminate the root \p r from \p poly[].
static inline size_t
dmnsn_eliminate_root(double poly[], size_t degree, double r)
{
double rem = poly[degree];
for (size_t i = degree; i-- > 0;) {
double temp = poly[i];
poly[i] = rem;
rem = temp + r*rem;
}
return degree - 1;
}
/// Solve a normalized linear polynomial algebraically.
static inline size_t
dmnsn_solve_linear(const double poly[2], double x[1])
{
x[0] = -poly[0];
if (x[0] >= dmnsn_epsilon)
return 1;
else
return 0;
}
/// Solve a normalized quadratic polynomial algebraically.
static inline size_t
dmnsn_solve_quadratic(const double poly[3], double x[2])
{
double disc = poly[1]*poly[1] - 4.0*poly[0];
if (disc >= 0.0) {
double s = sqrt(disc);
x[0] = (-poly[1] + s)/2.0;
x[1] = (-poly[1] - s)/2.0;
if (x[1] >= dmnsn_epsilon)
return 2;
else if (x[0] >= dmnsn_epsilon)
return 1;
else
return 0;
} else {
return 0;
}
}
/// Solve a normalized cubic polynomial algebraically.
static inline size_t
dmnsn_solve_cubic(double poly[4], double x[3])
{
// Reduce to a monic trinomial (t^3 + p*t + q, t = x + b/3)
double b2 = poly[2]*poly[2];
double p = poly[1] - b2/3.0;
double q = poly[0] - poly[2]*(9.0*poly[1] - 2.0*b2)/27.0;
double disc = 4.0*p*p*p + 27.0*q*q;
double bdiv3 = poly[2]/3.0;
if (disc < 0.0) {
// Three real roots -- this implies p < 0
double msqrtp3 = -sqrt(-p/3.0);
double theta = acos(3*q/(2*p*msqrtp3))/3.0;
// Store the roots in order from largest to smallest
x[2] = 2.0*msqrtp3*cos(theta) - bdiv3;
x[0] = -2.0*msqrtp3*cos(4.0*atan(1.0)/3.0 - theta) - bdiv3;
x[1] = -(x[0] + x[2] + poly[2]);
if (x[2] >= dmnsn_epsilon)
return 3;
else if (x[1] >= dmnsn_epsilon)
return 2;
} else if (disc > 0.0) {
// One real root
double cbrtdiscq = cbrt(sqrt(disc/108.0) + fabs(q)/2.0);
double abst = cbrtdiscq - p/(3.0*cbrtdiscq);
if (q >= 0) {
x[0] = -abst - bdiv3;
} else {
x[0] = abst - bdiv3;
}
} else if (fabs(p) < dmnsn_epsilon) {
// Equation is a perfect cube
x[0] = -bdiv3;
} else {
// Two real roots; one duplicate
double t1 = -(3.0*q)/(2.0*p), t2 = -2.0*t1;
x[0] = dmnsn_max(t1, t2) - bdiv3;
x[1] = dmnsn_min(t1, t2) - bdiv3;
if (x[1] >= dmnsn_epsilon)
return 2;
}
if (x[0] >= dmnsn_epsilon)
return 1;
else
return 0;
}
// Solve a polynomial
DMNSN_HOT size_t
dmnsn_polynomial_solve(const double poly[], size_t degree, double x[])
{
// Copy the polynomial so we can be destructive
double copy[degree + 1], *p = copy;
dmnsn_polynomial_copy(p, poly, degree);
// Index into x[]
size_t i = 0;
// Account for leading zero coefficients
degree = dmnsn_real_degree(p, degree);
// Normalize the leading coefficient to 1.0
dmnsn_polynomial_normalize(p, degree);
// Eliminate simple zero roots
dmnsn_eliminate_zero_roots(&p, °ree);
static const size_t max_algebraic = 3;
if (degree > max_algebraic) {
// Find isolating intervals for (degree - max_algebraic) roots of p[]
double ranges[degree - max_algebraic][2];
size_t n = dmnsn_root_bounds(p, degree, ranges, degree - max_algebraic);
for (size_t j = 0; j < n; ++j) {
// Bisect within the found range
double r = dmnsn_bisect_root(p, degree, ranges[j][0], ranges[j][1]);
// Use synthetic division to eliminate the root `r'
degree = dmnsn_eliminate_root(p, degree, r);
// Store the found root
x[i] = r;
++i;
}
}
switch (degree) {
case 1:
i += dmnsn_solve_linear(p, x + i);
break;
case 2:
i += dmnsn_solve_quadratic(p, x + i);
break;
case 3:
i += dmnsn_solve_cubic(p, x + i);
break;
}
return i;
}
// Print a polynomial
void
dmnsn_polynomial_print(FILE *file, const double poly[], size_t degree)
{
for (size_t i = degree + 1; i-- > 0;) {
if (i < degree) {
fprintf(file, (poly[i] >= 0.0) ? " + " : " - ");
}
fprintf(file, "%.17g", fabs(poly[i]));
if (i >= 2) {
fprintf(file, "*x^%zu", i);
} else if (i == 1) {
fprintf(file, "*x");
}
}
}
|