1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
/*************************************************************************
* Copyright (C) 2014 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Triangle fans. See
* http://tavianator.com/2014/05/a-beautiful-raymesh-intersection-algorithm/
* for a description of the intersection algorithm.
*/
#include "internal.h"
#include "dimension/model.h"
/// Triangle fan type.
typedef struct {
dmnsn_object object;
size_t ncoeffs;
double coeffs[][6];
} dmnsn_triangle_fan;
/// Change basis from one triangle to the next.
static inline dmnsn_vector
dmnsn_change_basis(const double coeffs[6], dmnsn_vector v)
{
return dmnsn_new_vector(
coeffs[0]*v.X + coeffs[1]*v.Z + v.Y,
coeffs[2]*v.X + coeffs[3]*v.Z,
coeffs[4]*v.X + coeffs[5]*v.Z
);
}
/// Change basis from one triangle to the next for a normal vector.
static inline dmnsn_vector
dmnsn_change_normal_basis(const double coeffs[6], dmnsn_vector n)
{
return dmnsn_new_vector(
coeffs[0]*n.X + coeffs[2]*n.Y + coeffs[4]*n.Z,
n.X,
coeffs[1]*n.X + coeffs[3]*n.Y + coeffs[5]*n.Z
);
}
/// Change basis from one triangle to the next for a ray
static inline dmnsn_ray
dmnsn_change_ray_basis(const double coeffs[6], dmnsn_ray l)
{
return dmnsn_new_ray(dmnsn_change_basis(coeffs, l.x0), dmnsn_change_basis(coeffs, l.n));
}
/// Store the compressed incremental matrix.
static inline void
dmnsn_compress_coeffs(double coeffs[6], dmnsn_matrix incremental)
{
coeffs[0] = incremental.n[0][0];
coeffs[1] = incremental.n[0][2];
coeffs[2] = incremental.n[1][0];
coeffs[3] = incremental.n[1][2];
coeffs[4] = incremental.n[2][0];
coeffs[5] = incremental.n[2][2];
}
/// Decompress the incremental matrix.
static inline dmnsn_matrix
dmnsn_decompress_coeffs(const double coeffs[6])
{
return dmnsn_new_matrix(
coeffs[0], 1.0, coeffs[1], 0.0,
coeffs[2], 0.0, coeffs[3], 0.0,
coeffs[4], 0.0, coeffs[5], 0.0
);
}
/// Make a change-of-basis matrix for a triangle.
static inline dmnsn_matrix
dmnsn_triangle_basis(dmnsn_vector a, dmnsn_vector ab, dmnsn_vector ac)
{
dmnsn_vector normal = dmnsn_vector_cross(ab, ac);
return dmnsn_new_matrix4(ab, ac, normal, a);
}
/// Optimized ray/triangle intersection test.
static inline bool
dmnsn_ray_triangle_intersection(dmnsn_ray l, double *t, double *u, double *v)
{
*t = -l.x0.Z/l.n.Z;
*u = l.x0.X + (*t)*l.n.X;
*v = l.x0.Y + (*t)*l.n.Y;
return *t >= 0.0 && *u >= 0.0 && *v >= 0.0 && *u + *v <= 1.0;
}
/// Triangle fan intersection callback.
DMNSN_HOT static bool
dmnsn_triangle_fan_intersection_fn(const dmnsn_object *object, dmnsn_ray l, dmnsn_intersection *intersection)
{
const dmnsn_triangle_fan *fan = (const dmnsn_triangle_fan *)object;
double t, u, v;
double best_t = INFINITY;
if (dmnsn_ray_triangle_intersection(l, &t, &u, &v)) {
best_t = t;
}
dmnsn_vector normal = dmnsn_z;
dmnsn_vector best_normal = normal;
for (size_t i = 0; i < fan->ncoeffs; ++i) {
const double *coeffs = fan->coeffs[i];
l = dmnsn_change_ray_basis(coeffs, l);
normal = dmnsn_change_normal_basis(coeffs, normal);
if (dmnsn_ray_triangle_intersection(l, &t, &u, &v) && t < best_t) {
best_t = t;
best_normal = normal;
}
}
if (!isinf(best_t)) {
intersection->t = t;
intersection->normal = best_normal;
return true;
}
return false;
}
/// Triangle fan inside callback.
static bool
dmnsn_triangle_fan_inside_fn(const dmnsn_object *object, dmnsn_vector point)
{
return false;
}
/// Computes the bounding box for the first triangle.
static inline dmnsn_aabb
dmnsn_bound_first_triangle(dmnsn_matrix trans)
{
dmnsn_vector a = dmnsn_transform_point(trans, dmnsn_zero);
dmnsn_vector b = dmnsn_transform_point(trans, dmnsn_x);
dmnsn_vector c = dmnsn_transform_point(trans, dmnsn_y);
dmnsn_aabb box = dmnsn_new_aabb(a, a);
box = dmnsn_aabb_swallow(box, b);
box = dmnsn_aabb_swallow(box, c);
return box;
}
/// Triangle fan bounding callback.
static dmnsn_aabb
dmnsn_triangle_fan_bounding_fn(const dmnsn_object *object, dmnsn_matrix trans)
{
const dmnsn_triangle_fan *fan = (const dmnsn_triangle_fan *)object;
dmnsn_aabb box = dmnsn_bound_first_triangle(trans);
for (size_t i = 0; i < fan->ncoeffs; ++i) {
dmnsn_matrix incremental = dmnsn_decompress_coeffs(fan->coeffs[i]);
trans = dmnsn_matrix_mul(trans, dmnsn_matrix_inverse(incremental));
dmnsn_vector vertex = dmnsn_transform_point(trans, dmnsn_y);
box = dmnsn_aabb_swallow(box, vertex);
}
return box;
}
/// Triangle fan vtable.
static dmnsn_object_vtable dmnsn_triangle_fan_vtable = {
.intersection_fn = dmnsn_triangle_fan_intersection_fn,
.inside_fn = dmnsn_triangle_fan_inside_fn,
.bounding_fn = dmnsn_triangle_fan_bounding_fn,
};
/// Smooth triangle fan type.
typedef struct dmnsn_smooth_triangle_fan {
dmnsn_object object;
dmnsn_vector na, nab, nac;
size_t ncoeffs;
double coeffs[][9]; ///< 0-6 is same as dmnsn_triangle_fan, 6-9 is the normal
} dmnsn_smooth_triangle_fan;
/// Smooth triangle fan intersection callback.
DMNSN_HOT static bool
dmnsn_smooth_triangle_fan_intersection_fn(const dmnsn_object *object, dmnsn_ray l, dmnsn_intersection *intersection)
{
const dmnsn_smooth_triangle_fan *fan = (const dmnsn_smooth_triangle_fan *)object;
dmnsn_vector nab = fan->nab;
dmnsn_vector nac = fan->nac;
double t, u, v;
double best_t = INFINITY;
dmnsn_vector best_normal;
if (dmnsn_ray_triangle_intersection(l, &t, &u, &v)) {
best_t = t;
best_normal = dmnsn_vector_add(dmnsn_vector_mul(u, nab), dmnsn_vector_mul(v, nac));
}
for (size_t i = 0; i < fan->ncoeffs; ++i) {
const double *coeffs = fan->coeffs[i];
l = dmnsn_change_ray_basis(coeffs, l);
nab = nac;
nac = dmnsn_new_vector(coeffs[6], coeffs[7], coeffs[8]);
if (dmnsn_ray_triangle_intersection(l, &t, &u, &v) && t < best_t) {
best_t = t;
best_normal = dmnsn_vector_add(dmnsn_vector_mul(u, nab), dmnsn_vector_mul(v, nac));
}
}
if (!isinf(best_t)) {
intersection->t = t;
intersection->normal = dmnsn_vector_add(fan->na, best_normal);
return true;
}
return false;
}
/// Smooth triangle fan bounding callback.
static dmnsn_aabb
dmnsn_smooth_triangle_fan_bounding_fn(const dmnsn_object *object, dmnsn_matrix trans)
{
const dmnsn_smooth_triangle_fan *fan = (const dmnsn_smooth_triangle_fan *)object;
dmnsn_aabb box = dmnsn_bound_first_triangle(trans);
for (size_t i = 0; i < fan->ncoeffs; ++i) {
dmnsn_matrix incremental = dmnsn_decompress_coeffs(fan->coeffs[i]);
trans = dmnsn_matrix_mul(trans, dmnsn_matrix_inverse(incremental));
dmnsn_vector vertex = dmnsn_transform_point(trans, dmnsn_y);
box = dmnsn_aabb_swallow(box, vertex);
}
return box;
}
/// Smooth triangle fan vtable.
static dmnsn_object_vtable dmnsn_smooth_triangle_fan_vtable = {
.intersection_fn = dmnsn_smooth_triangle_fan_intersection_fn,
.inside_fn = dmnsn_triangle_fan_inside_fn,
.bounding_fn = dmnsn_smooth_triangle_fan_bounding_fn,
};
dmnsn_object *
dmnsn_new_triangle_fan(dmnsn_pool *pool, dmnsn_vector vertices[], size_t nvertices)
{
dmnsn_assert(nvertices >= 3, "Not enough vertices for one triangle");
size_t ncoeffs = nvertices - 3;
dmnsn_triangle_fan *fan = dmnsn_palloc(pool, sizeof(dmnsn_triangle_fan) + ncoeffs*sizeof(double[6]));
fan->ncoeffs = ncoeffs;
dmnsn_object *object = &fan->object;
dmnsn_init_object(object);
object->vtable = &dmnsn_triangle_fan_vtable;
// Compute the initial matrix and the coefficients
dmnsn_vector a = vertices[0];
dmnsn_vector ab = dmnsn_vector_sub(vertices[1], a);
dmnsn_vector ac = dmnsn_vector_sub(vertices[2], a);
dmnsn_matrix P = dmnsn_triangle_basis(a, ab, ac);
object->intrinsic_trans = P;
for (size_t i = 0; i < ncoeffs; ++i) {
ab = ac;
ac = dmnsn_vector_sub(vertices[i + 3], a);
dmnsn_matrix newP = dmnsn_triangle_basis(a, ab, ac);
dmnsn_matrix incremental = dmnsn_matrix_mul(dmnsn_matrix_inverse(newP), P);
dmnsn_compress_coeffs(fan->coeffs[i], incremental);
P = newP;
}
return object;
}
dmnsn_object *
dmnsn_new_smooth_triangle_fan(dmnsn_pool *pool, dmnsn_vector vertices[], dmnsn_vector normals[], size_t nvertices)
{
dmnsn_assert(nvertices >= 3, "Not enough vertices for one triangle");
size_t ncoeffs = nvertices - 3;
dmnsn_smooth_triangle_fan *fan = dmnsn_palloc(pool, sizeof(dmnsn_smooth_triangle_fan) + ncoeffs*sizeof(double[9]));
fan->ncoeffs = ncoeffs;
dmnsn_object *object = &fan->object;
dmnsn_init_object(object);
object->vtable = &dmnsn_smooth_triangle_fan_vtable;
// Compute the initial matrix
dmnsn_vector a = vertices[0];
dmnsn_vector ab = dmnsn_vector_sub(vertices[1], a);
dmnsn_vector ac = dmnsn_vector_sub(vertices[2], a);
dmnsn_matrix P = dmnsn_triangle_basis(a, ab, ac);
dmnsn_matrix Pabc = P;
object->intrinsic_trans = P;
// Transform the first three normals
dmnsn_vector na = dmnsn_vector_normalized(dmnsn_transform_normal(P, normals[0]));
dmnsn_vector nb = dmnsn_vector_normalized(dmnsn_transform_normal(P, normals[1]));
dmnsn_vector nc = dmnsn_vector_normalized(dmnsn_transform_normal(P, normals[2]));
fan->na = na;
fan->nab = dmnsn_vector_sub(nb, na);
fan->nac = dmnsn_vector_sub(nc, na);
// Compute the coefficients
for (size_t i = 0; i < ncoeffs; ++i) {
ab = ac;
ac = dmnsn_vector_sub(vertices[i + 3], a);
dmnsn_matrix newP = dmnsn_triangle_basis(a, ab, ac);
dmnsn_matrix incremental = dmnsn_matrix_mul(dmnsn_matrix_inverse(newP), P);
double *coeffs = fan->coeffs[i];
dmnsn_compress_coeffs(coeffs, incremental);
nc = dmnsn_vector_normalized(dmnsn_transform_normal(Pabc, normals[i + 3]));
dmnsn_vector nac = dmnsn_vector_sub(nc, na);
coeffs[6] = nac.X;
coeffs[7] = nac.Y;
coeffs[8] = nac.Z;
P = newP;
}
return object;
}
|