1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/*************************************************************************
* Copyright (C) 2009-2014 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Cubes.
*/
#include "dimension.h"
#include <math.h>
/** Intersection callback for a cube. */
static bool
dmnsn_cube_intersection_fn(const dmnsn_object *cube, dmnsn_line line,
dmnsn_intersection *intersection)
{
/* Clip the given line against the X, Y, and Z slabs */
dmnsn_vector nmin, nmax;
double tmin, tmax;
double tx1 = (-1.0 - line.x0.x)/line.n.x;
double tx2 = (+1.0 - line.x0.x)/line.n.x;
if (tx1 < tx2) {
tmin = tx1;
tmax = tx2;
nmin = dmnsn_new_vector(-1.0, 0.0, 0.0);
nmax = dmnsn_new_vector(+1.0, 0.0, 0.0);
} else {
tmin = tx2;
tmax = tx1;
nmin = dmnsn_new_vector(+1.0, 0.0, 0.0);
nmax = dmnsn_new_vector(-1.0, 0.0, 0.0);
}
if (tmin > tmax)
return false;
double ty1 = (-1.0 - line.x0.y)/line.n.y;
double ty2 = (+1.0 - line.x0.y)/line.n.y;
if (ty1 < ty2) {
if (ty1 > tmin) {
tmin = ty1;
nmin = dmnsn_new_vector(0.0, -1.0, 0.0);
}
if (ty2 < tmax) {
tmax = ty2;
nmax = dmnsn_new_vector(0.0, +1.0, 0.0);
}
} else {
if (ty2 > tmin) {
tmin = ty2;
nmin = dmnsn_new_vector(0.0, +1.0, 0.0);
}
if (ty1 < tmax) {
tmax = ty1;
nmax = dmnsn_new_vector(0.0, -1.0, 0.0);
}
}
if (tmin > tmax)
return false;
double tz1 = (-1.0 - line.x0.z)/line.n.z;
double tz2 = (+1.0 - line.x0.z)/line.n.z;
if (tz1 < tz2) {
if (tz1 > tmin) {
tmin = tz1;
nmin = dmnsn_new_vector(0.0, 0.0, -1.0);
}
if (tz2 < tmax) {
tmax = tz2;
nmax = dmnsn_new_vector(0.0, 0.0, +1.0);
}
} else {
if (tz2 > tmin) {
tmin = tz2;
nmin = dmnsn_new_vector(0.0, 0.0, +1.0);
}
if (tz1 < tmax) {
tmax = tz1;
nmax = dmnsn_new_vector(0.0, 0.0, -1.0);
}
}
if (tmin > tmax)
return false;
if (tmin < 0.0) {
tmin = tmax;
nmin = nmax;
}
if (tmin >= 0.0) {
intersection->t = tmin;
intersection->normal = nmin;
return true;
} else {
return false;
}
}
/** Inside callback for a cube. */
static bool
dmnsn_cube_inside_fn(const dmnsn_object *cube, dmnsn_vector point)
{
return point.x > -1.0 && point.x < 1.0
&& point.y > -1.0 && point.y < 1.0
&& point.z > -1.0 && point.z < 1.0;
}
/** Boundary callback for a cube. */
static dmnsn_bounding_box
dmnsn_cube_bounding_fn(const dmnsn_object *object, dmnsn_matrix trans)
{
dmnsn_bounding_box box = dmnsn_symmetric_bounding_box(dmnsn_new_vector(1.0, 1.0, 1.0));
return dmnsn_transform_bounding_box(trans, box);
}
/** Cube vtable. */
static const dmnsn_object_vtable dmnsn_cube_vtable = {
.intersection_fn = dmnsn_cube_intersection_fn,
.inside_fn = dmnsn_cube_inside_fn,
.bounding_fn = dmnsn_cube_bounding_fn,
};
/* Allocate a new cube object */
dmnsn_object *
dmnsn_new_cube(dmnsn_pool *pool)
{
dmnsn_object *cube = dmnsn_new_object(pool);
cube->vtable = &dmnsn_cube_vtable;
return cube;
}
|