summaryrefslogtreecommitdiffstats
path: root/libdimension/math/matrix.c
diff options
context:
space:
mode:
authorTavian Barnes <tavianator@tavianator.com>2014-08-19 17:10:03 -0400
committerTavian Barnes <tavianator@tavianator.com>2015-10-25 11:03:56 -0400
commit7b09710392d35fb55b52031d447a542d99fc6b4b (patch)
tree270eb927ee8c52ceeb99926ebf4843704775a610 /libdimension/math/matrix.c
parent200c86b91ea7063d35be3bffc11c5da53c054653 (diff)
downloaddimension-7b09710392d35fb55b52031d447a542d99fc6b4b.tar.xz
Modularize the libdimension codebase.
Diffstat (limited to 'libdimension/math/matrix.c')
-rw-r--r--libdimension/math/matrix.c388
1 files changed, 388 insertions, 0 deletions
diff --git a/libdimension/math/matrix.c b/libdimension/math/matrix.c
new file mode 100644
index 0000000..25590d8
--- /dev/null
+++ b/libdimension/math/matrix.c
@@ -0,0 +1,388 @@
+/*************************************************************************
+ * Copyright (C) 2009-2014 Tavian Barnes <tavianator@tavianator.com> *
+ * *
+ * This file is part of The Dimension Library. *
+ * *
+ * The Dimension Library is free software; you can redistribute it and/ *
+ * or modify it under the terms of the GNU Lesser General Public License *
+ * as published by the Free Software Foundation; either version 3 of the *
+ * License, or (at your option) any later version. *
+ * *
+ * The Dimension Library is distributed in the hope that it will be *
+ * useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
+ * Lesser General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU Lesser General Public *
+ * License along with this program. If not, see *
+ * <http://www.gnu.org/licenses/>. *
+ *************************************************************************/
+
+/**
+ * @file
+ * Matrix function implementations.
+ */
+
+#include "internal.h"
+#include "dimension/math.h"
+#include <math.h>
+
+// Identity matrix
+dmnsn_matrix
+dmnsn_identity_matrix(void)
+{
+ return dmnsn_new_matrix(1.0, 0.0, 0.0, 0.0,
+ 0.0, 1.0, 0.0, 0.0,
+ 0.0, 0.0, 1.0, 0.0);
+}
+
+// Scaling matrix
+dmnsn_matrix
+dmnsn_scale_matrix(dmnsn_vector s)
+{
+ return dmnsn_new_matrix(s.x, 0.0, 0.0, 0.0,
+ 0.0, s.y, 0.0, 0.0,
+ 0.0, 0.0, s.z, 0.0);
+}
+
+// Translation matrix
+dmnsn_matrix
+dmnsn_translation_matrix(dmnsn_vector d)
+{
+ return dmnsn_new_matrix(1.0, 0.0, 0.0, d.x,
+ 0.0, 1.0, 0.0, d.y,
+ 0.0, 0.0, 1.0, d.z);
+}
+
+// Left-handed rotation matrix; theta/|theta| = axis, |theta| = angle
+dmnsn_matrix
+dmnsn_rotation_matrix(dmnsn_vector theta)
+{
+ // Two trig calls, 25 multiplications, 13 additions
+
+ double angle = dmnsn_vector_norm(theta);
+ if (fabs(angle) < dmnsn_epsilon) {
+ return dmnsn_identity_matrix();
+ }
+ dmnsn_vector axis = dmnsn_vector_div(theta, angle);
+
+ // Shorthand to make dmnsn_new_matrix() call legible
+
+ double s = sin(angle);
+ double t = 1.0 - cos(angle);
+
+ double x = axis.x;
+ double y = axis.y;
+ double z = axis.z;
+
+ return dmnsn_new_matrix(
+ 1.0 + t*(x*x - 1.0), -z*s + t*x*y, y*s + t*x*z, 0.0,
+ z*s + t*x*y, 1.0 + t*(y*y - 1.0), -x*s + t*y*z, 0.0,
+ -y*s + t*x*z, x*s + t*y*z, 1.0 + t*(z*z - 1.0), 0.0
+ );
+}
+
+// Find the angle between two vectors with respect to an axis
+static double
+dmnsn_axis_angle(dmnsn_vector from, dmnsn_vector to, dmnsn_vector axis)
+{
+ from = dmnsn_vector_sub(from, dmnsn_vector_proj(from, axis));
+ to = dmnsn_vector_sub(to, dmnsn_vector_proj(to, axis));
+
+ double fromnorm = dmnsn_vector_norm(from);
+ double tonorm = dmnsn_vector_norm(to);
+ if (fromnorm < dmnsn_epsilon || tonorm < dmnsn_epsilon) {
+ return 0.0;
+ }
+
+ from = dmnsn_vector_div(from, fromnorm);
+ to = dmnsn_vector_div(to, tonorm);
+
+ double angle = acos(dmnsn_vector_dot(from, to));
+
+ if (dmnsn_vector_dot(dmnsn_vector_cross(from, to), axis) > 0.0) {
+ return angle;
+ } else {
+ return -angle;
+ }
+}
+
+// Alignment matrix
+dmnsn_matrix
+dmnsn_alignment_matrix(dmnsn_vector from, dmnsn_vector to,
+ dmnsn_vector axis1, dmnsn_vector axis2)
+{
+ double theta1 = dmnsn_axis_angle(from, to, axis1);
+ dmnsn_matrix align1 = dmnsn_rotation_matrix(dmnsn_vector_mul(theta1, axis1));
+ from = dmnsn_transform_direction(align1, from);
+ axis2 = dmnsn_transform_direction(align1, axis2);
+
+ double theta2 = dmnsn_axis_angle(from, to, axis2);
+ dmnsn_matrix align2 = dmnsn_rotation_matrix(dmnsn_vector_mul(theta2, axis2));
+
+ return dmnsn_matrix_mul(align2, align1);
+}
+
+// Matrix inversion helper functions
+
+/// A 2x2 matrix for inversion by partitioning.
+typedef struct { double n[2][2]; } dmnsn_matrix2;
+
+/// Construct a 2x2 matrix.
+static dmnsn_matrix2 dmnsn_new_matrix2(double a1, double a2,
+ double b1, double b2);
+/// Invert a 2x2 matrix.
+static dmnsn_matrix2 dmnsn_matrix2_inverse(dmnsn_matrix2 A);
+/// Negate a 2x2 matrix.
+static dmnsn_matrix2 dmnsn_matrix2_negate(dmnsn_matrix2 A);
+/// Subtract two 2x2 matricies.
+static dmnsn_matrix2 dmnsn_matrix2_sub(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs);
+/// Add two 2x2 matricies.
+static dmnsn_matrix2 dmnsn_matrix2_mul(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs);
+
+/// Invert a matrix with the slower cofactor algorithm, if partitioning failed.
+static dmnsn_matrix dmnsn_matrix_inverse_generic(dmnsn_matrix A);
+/// Get the [\p row, \p col] cofactor of A.
+static double dmnsn_matrix_cofactor(dmnsn_matrix A, size_t row, size_t col);
+
+// Invert a matrix, by partitioning
+dmnsn_matrix
+dmnsn_matrix_inverse(dmnsn_matrix A)
+{
+ // Use partitioning to invert a matrix:
+ //
+ // [ P Q ] -1
+ // [ R S ]
+ //
+ // = [ PP QQ ]
+ // [ RR SS ],
+ //
+ // with PP = inv(P) - inv(P)*Q*RR,
+ // QQ = -inv(P)*Q*SS,
+ // RR = -SS*R*inv(P), and
+ // SS = inv(S - R*inv(P)*Q).
+
+ // The algorithm uses 2 inversions, 6 multiplications, and 2 subtractions,
+ // giving 52 multiplications, 34 additions, and 8 divisions.
+
+ dmnsn_matrix2 P, Q, R, S, Pi, RPi, PiQ, RPiQ, PP, QQ, RR, SS;
+ double Pdet = A.n[0][0]*A.n[1][1] - A.n[0][1]*A.n[1][0];
+
+ if (dmnsn_unlikely(fabs(Pdet) < dmnsn_epsilon)) {
+ // If P is close to singular, try a more generic algorithm; this is very
+ // unlikely, but not impossible, eg.
+ // [ 1 1 0 0 ]
+ // [ 1 1 1 0 ]
+ // [ 0 1 1 0 ]
+ // [ 0 0 0 1 ]
+ return dmnsn_matrix_inverse_generic(A);
+ }
+
+ // Partition the matrix
+ P = dmnsn_new_matrix2(A.n[0][0], A.n[0][1],
+ A.n[1][0], A.n[1][1]);
+ Q = dmnsn_new_matrix2(A.n[0][2], A.n[0][3],
+ A.n[1][2], A.n[1][3]);
+ R = dmnsn_new_matrix2(A.n[2][0], A.n[2][1],
+ 0.0, 0.0);
+ S = dmnsn_new_matrix2(A.n[2][2], A.n[2][3],
+ 0.0, 1.0);
+
+ // Do this inversion ourselves, since we already have the determinant
+ Pi = dmnsn_new_matrix2( P.n[1][1]/Pdet, -P.n[0][1]/Pdet,
+ -P.n[1][0]/Pdet, P.n[0][0]/Pdet);
+
+ // Calculate R*inv(P), inv(P)*Q, and R*inv(P)*Q
+ RPi = dmnsn_matrix2_mul(R, Pi);
+ PiQ = dmnsn_matrix2_mul(Pi, Q);
+ RPiQ = dmnsn_matrix2_mul(R, PiQ);
+
+ // Calculate the partitioned inverse
+ SS = dmnsn_matrix2_inverse(dmnsn_matrix2_sub(S, RPiQ));
+ RR = dmnsn_matrix2_negate(dmnsn_matrix2_mul(SS, RPi));
+ QQ = dmnsn_matrix2_negate(dmnsn_matrix2_mul(PiQ, SS));
+ PP = dmnsn_matrix2_sub(Pi, dmnsn_matrix2_mul(PiQ, RR));
+
+ // Reconstruct the matrix
+ return dmnsn_new_matrix(PP.n[0][0], PP.n[0][1], QQ.n[0][0], QQ.n[0][1],
+ PP.n[1][0], PP.n[1][1], QQ.n[1][0], QQ.n[1][1],
+ RR.n[0][0], RR.n[0][1], SS.n[0][0], SS.n[0][1]);
+}
+
+// For nice shorthand
+static dmnsn_matrix2
+dmnsn_new_matrix2(double a1, double a2, double b1, double b2)
+{
+ dmnsn_matrix2 m = { { { a1, a2 },
+ { b1, b2 } } };
+ return m;
+}
+
+// Invert a 2x2 matrix
+static dmnsn_matrix2
+dmnsn_matrix2_inverse(dmnsn_matrix2 A)
+{
+ // 4 divisions, 2 multiplications, 1 addition
+ double det = A.n[0][0]*A.n[1][1] - A.n[0][1]*A.n[1][0];
+ return dmnsn_new_matrix2( A.n[1][1]/det, -A.n[0][1]/det,
+ -A.n[1][0]/det, A.n[0][0]/det);
+}
+
+// Also basically a shorthand
+static dmnsn_matrix2
+dmnsn_matrix2_negate(dmnsn_matrix2 A)
+{
+ return dmnsn_new_matrix2(-A.n[0][0], -A.n[0][1],
+ -A.n[1][0], -A.n[1][1]);
+}
+
+// 2x2 matrix subtraction
+static dmnsn_matrix2
+dmnsn_matrix2_sub(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs)
+{
+ // 4 additions
+ return dmnsn_new_matrix2(
+ lhs.n[0][0] - rhs.n[0][0], lhs.n[0][1] - rhs.n[0][1],
+ lhs.n[1][0] - rhs.n[1][0], lhs.n[1][1] - rhs.n[1][1]
+ );
+}
+
+// 2x2 matrix multiplication
+static dmnsn_matrix2
+dmnsn_matrix2_mul(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs)
+{
+ // 8 multiplications, 4 additions
+ return dmnsn_new_matrix2(
+ lhs.n[0][0]*rhs.n[0][0] + lhs.n[0][1]*rhs.n[1][0],
+ lhs.n[0][0]*rhs.n[0][1] + lhs.n[0][1]*rhs.n[1][1],
+ lhs.n[1][0]*rhs.n[0][0] + lhs.n[1][1]*rhs.n[1][0],
+ lhs.n[1][0]*rhs.n[0][1] + lhs.n[1][1]*rhs.n[1][1]
+ );
+}
+
+// Invert a matrix, if partitioning failed (|P| == 0)
+static dmnsn_matrix
+dmnsn_matrix_inverse_generic(dmnsn_matrix A)
+{
+ // For A = [ A' b ] A^-1 = [ A'^-1 -(A'^-1)*b ]
+ // [ 0 ... 0 1 ], [ 0 ... 0 1 ].
+ //
+ // Invert A' by calculating its adjucate.
+ dmnsn_matrix inv;
+ double det = 0.0, C;
+
+ // Perform a Laplace expansion along the first row to give us the adjugate's
+ // first column and the determinant
+ for (size_t j = 0; j < 3; ++j) {
+ C = dmnsn_matrix_cofactor(A, 0, j);
+ det += A.n[0][j]*C;
+ inv.n[j][0] = C;
+ }
+
+ // Divide the first column by the determinant
+ for (size_t j = 0; j < 3; ++j) {
+ inv.n[j][0] /= det;
+ }
+
+ // Find the rest of A'
+ for (size_t j = 0; j < 3; ++j) {
+ for (size_t i = 1; i < 3; ++i) {
+ inv.n[j][i] = dmnsn_matrix_cofactor(A, i, j)/det;
+ }
+ inv.n[j][3] = 0.0;
+ }
+
+ // Find the translational component of the inverse
+ for (size_t i = 0; i < 3; ++i) {
+ for (size_t j = 0; j < 3; ++j) {
+ inv.n[i][3] -= inv.n[i][j]*A.n[j][3];
+ }
+ }
+
+ return inv;
+}
+
+// Gives the cofactor at row, col; the determinant of the matrix formed from the
+// upper-left 3x3 corner of A by ignoring row `row' and column `col',
+// times (-1)^(row + col)
+static double
+dmnsn_matrix_cofactor(dmnsn_matrix A, size_t row, size_t col)
+{
+ // 2 multiplications, 1 addition
+ double n[4];
+ size_t k = 0;
+ for (size_t i = 0; i < 3; ++i) {
+ for (size_t j = 0; j < 3; ++j) {
+ if (i != row && j != col) {
+ n[k] = A.n[i][j];
+ ++k;
+ }
+ }
+ }
+
+ double C = n[0]*n[3] - n[1]*n[2];
+ if ((row + col)%2 == 0) {
+ return C;
+ } else {
+ return -C;
+ }
+}
+
+// 4x4 matrix multiplication
+dmnsn_matrix
+dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs)
+{
+ // 36 multiplications, 27 additions
+ dmnsn_matrix r;
+
+ r.n[0][0] = lhs.n[0][0]*rhs.n[0][0] + lhs.n[0][1]*rhs.n[1][0] + lhs.n[0][2]*rhs.n[2][0];
+ r.n[0][1] = lhs.n[0][0]*rhs.n[0][1] + lhs.n[0][1]*rhs.n[1][1] + lhs.n[0][2]*rhs.n[2][1];
+ r.n[0][2] = lhs.n[0][0]*rhs.n[0][2] + lhs.n[0][1]*rhs.n[1][2] + lhs.n[0][2]*rhs.n[2][2];
+ r.n[0][3] = lhs.n[0][0]*rhs.n[0][3] + lhs.n[0][1]*rhs.n[1][3] + lhs.n[0][2]*rhs.n[2][3] + lhs.n[0][3];
+
+ r.n[1][0] = lhs.n[1][0]*rhs.n[0][0] + lhs.n[1][1]*rhs.n[1][0] + lhs.n[1][2]*rhs.n[2][0];
+ r.n[1][1] = lhs.n[1][0]*rhs.n[0][1] + lhs.n[1][1]*rhs.n[1][1] + lhs.n[1][2]*rhs.n[2][1];
+ r.n[1][2] = lhs.n[1][0]*rhs.n[0][2] + lhs.n[1][1]*rhs.n[1][2] + lhs.n[1][2]*rhs.n[2][2];
+ r.n[1][3] = lhs.n[1][0]*rhs.n[0][3] + lhs.n[1][1]*rhs.n[1][3] + lhs.n[1][2]*rhs.n[2][3] + lhs.n[1][3];
+
+ r.n[2][0] = lhs.n[2][0]*rhs.n[0][0] + lhs.n[2][1]*rhs.n[1][0] + lhs.n[2][2]*rhs.n[2][0];
+ r.n[2][1] = lhs.n[2][0]*rhs.n[0][1] + lhs.n[2][1]*rhs.n[1][1] + lhs.n[2][2]*rhs.n[2][1];
+ r.n[2][2] = lhs.n[2][0]*rhs.n[0][2] + lhs.n[2][1]*rhs.n[1][2] + lhs.n[2][2]*rhs.n[2][2];
+ r.n[2][3] = lhs.n[2][0]*rhs.n[0][3] + lhs.n[2][1]*rhs.n[1][3] + lhs.n[2][2]*rhs.n[2][3] + lhs.n[2][3];
+
+ return r;
+}
+
+// Give an axis-aligned box that contains the given box transformed by `lhs'
+dmnsn_aabb
+dmnsn_transform_aabb(dmnsn_matrix trans, dmnsn_aabb box)
+{
+ // Infinite/zero bounding box support
+ if (isinf(box.min.x)) {
+ return box;
+ }
+
+ // Taking the "absolute value" of the matrix saves some min/max calculations
+ for (int i = 0; i < 3; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ trans.n[i][j] = fabs(trans.n[i][j]);
+ }
+ }
+
+ dmnsn_vector Mt = dmnsn_matrix_column(trans, 3);
+ dmnsn_aabb ret = { Mt, Mt };
+
+ dmnsn_vector Mz = dmnsn_matrix_column(trans, 2);
+ ret.min = dmnsn_vector_add(ret.min, dmnsn_vector_mul(box.min.z, Mz));
+ ret.max = dmnsn_vector_add(ret.max, dmnsn_vector_mul(box.max.z, Mz));
+
+ dmnsn_vector My = dmnsn_matrix_column(trans, 1);
+ ret.min = dmnsn_vector_add(ret.min, dmnsn_vector_mul(box.min.y, My));
+ ret.max = dmnsn_vector_add(ret.max, dmnsn_vector_mul(box.max.y, My));
+
+ dmnsn_vector Mx = dmnsn_matrix_column(trans, 0);
+ ret.min = dmnsn_vector_add(ret.min, dmnsn_vector_mul(box.min.x, Mx));
+ ret.max = dmnsn_vector_add(ret.max, dmnsn_vector_mul(box.max.x, Mx));
+
+ return ret;
+}