diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2014-09-03 15:55:19 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2015-10-25 11:03:56 -0400 |
commit | b554b20c8d59d6046bdcec7c79fb61cd0e65811c (patch) | |
tree | a6c6f257cfaffcec953be7c0cce180f7a8855c68 /libdimension/dimension/math/matrix.h | |
parent | b2cf35c26d5263f3079480208429e3a1d7dd2373 (diff) | |
download | dimension-b554b20c8d59d6046bdcec7c79fb61cd0e65811c.tar.xz |
math: Make vectors have an array instead of different fields.
Diffstat (limited to 'libdimension/dimension/math/matrix.h')
-rw-r--r-- | libdimension/dimension/math/matrix.h | 210 |
1 files changed, 138 insertions, 72 deletions
diff --git a/libdimension/dimension/math/matrix.h b/libdimension/dimension/math/matrix.h index 7471bf5..e67121e 100644 --- a/libdimension/dimension/math/matrix.h +++ b/libdimension/dimension/math/matrix.h @@ -39,152 +39,218 @@ typedef struct dmnsn_matrix { "[%g\t%g\t%g\t%g]\n" \ "[%g\t%g\t%g\t%g]" /** The appropriate arguements to printf() a matrix. */ -#define DMNSN_MATRIX_PRINTF(m) \ - (m).n[0][0], (m).n[0][1], (m).n[0][2], (m).n[0][3], \ - (m).n[1][0], (m).n[1][1], (m).n[1][2], (m).n[1][3], \ - (m).n[2][0], (m).n[2][1], (m).n[2][2], (m).n[2][3], \ +#define DMNSN_MATRIX_PRINTF(M) \ + (M).n[0][0], (M).n[0][1], (M).n[0][2], (M).n[0][3], \ + (M).n[1][0], (M).n[1][1], (M).n[1][2], (M).n[1][3], \ + (M).n[2][0], (M).n[2][1], (M).n[2][2], (M).n[2][3], \ 0.0, 0.0, 0.0, 1.0 -/** Construct a new transformation matrix. */ +/** Create a transformation matrix. */ DMNSN_INLINE dmnsn_matrix -dmnsn_new_matrix(double a0, double a1, double a2, double a3, - double b0, double b1, double b2, double b3, - double c0, double c1, double c2, double c3) +dmnsn_new_matrix(double a0, double b0, double c0, double d0, + double a1, double b1, double c1, double d1, + double a2, double b2, double c2, double d2) { - dmnsn_matrix m = { { { a0, a1, a2, a3 }, - { b0, b1, b2, b3 }, - { c0, c1, c2, c3 } } }; - return m; + dmnsn_matrix M = { + { + { a0, b0, c0, d0 }, + { a1, b1, c1, d1 }, + { a2, b2, c2, d2 } + } + }; + return M; } -/** Construct a new transformation matrix from column vectors. */ +/** Create a transformation matrix from column vectors. */ DMNSN_INLINE dmnsn_matrix -dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c, - dmnsn_vector d) +dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c, dmnsn_vector d) { - dmnsn_matrix m = { { { a.x, b.x, c.x, d.x }, - { a.y, b.y, c.y, d.y }, - { a.z, b.z, c.z, d.z } } }; - return m; + dmnsn_matrix M; + + unsigned int i; + for (i = 0; i < 3; ++i) { + M.n[i][0] = a.n[i]; + } + for (i = 0; i < 3; ++i) { + M.n[i][1] = b.n[i]; + } + for (i = 0; i < 3; ++i) { + M.n[i][2] = c.n[i]; + } + for (i = 0; i < 3; ++i) { + M.n[i][3] = d.n[i]; + } + + return M; } /** Extract column vectors from a matrix. */ DMNSN_INLINE dmnsn_vector dmnsn_matrix_column(dmnsn_matrix M, unsigned int i) { - return dmnsn_new_vector(M.n[0][i], M.n[1][i], M.n[2][i]); + dmnsn_vector v; + unsigned int j; + for (j = 0; j < 3; ++j) { + v.n[j] = M.n[j][i]; + } + return v; } /** Return the identity matrix. */ -dmnsn_matrix dmnsn_identity_matrix(void); +DMNSN_INLINE dmnsn_matrix +dmnsn_identity_matrix(void) +{ + return dmnsn_new_matrix( + 1.0, 0.0, 0.0, 0.0, + 0.0, 1.0, 0.0, 0.0, + 0.0, 0.0, 1.0, 0.0 + ); +} /** - * A scale transformation. - * @param[in] s A vector with components representing the scaling factor in - * each axis. - * @return The transformation matrix. + * Return a scale transformation. + * @param[in] s A vector with components representing the scaling factor in + * each axis. */ -dmnsn_matrix dmnsn_scale_matrix(dmnsn_vector s); +DMNSN_INLINE dmnsn_matrix +dmnsn_scale_matrix(dmnsn_vector s) +{ + return dmnsn_new_matrix( + s.n[0], 0.0, 0.0, 0.0, + 0.0, s.n[1], 0.0, 0.0, + 0.0, 0.0, s.n[2], 0.0 + ); +} + /** - * A translation. - * @param[in] d The vector to translate by. - * @return The transformation matrix. + * Set \p M to a translation matrix. + * @param[in] d The vector to translate by. */ -dmnsn_matrix dmnsn_translation_matrix(dmnsn_vector d); +DMNSN_INLINE dmnsn_matrix +dmnsn_translation_matrix(dmnsn_vector d) +{ + return dmnsn_new_matrix( + 1.0, 0.0, 0.0, d.n[0], + 0.0, 1.0, 0.0, d.n[1], + 0.0, 0.0, 1.0, d.n[2] + ); +} + /** - * A left-handed rotation. - * @param[in] theta A vector representing an axis and angle. - * @f$ axis = \vec{\theta}/|\vec{\theta}| @f$, - * @f$ angle = |\vec{\theta}| @f$ - * @return The transformation matrix. + * Return a rotation matrix. + * @param[in] theta A vector representing an axis and angle. + * @f$ axis = \vec{\theta}/|\vec{\theta}| @f$, + * @f$ angle = |\vec{\theta}| @f$ */ dmnsn_matrix dmnsn_rotation_matrix(dmnsn_vector theta); /** - * An alignment matrix. + * Return an alignment matrix. * @param[in] from The initial vector. * @param[in] to The desired direction. * @param[in] axis1 The first axis about which to rotate. * @param[in] axis2 The second axis about which to rotate. - * @return A transformation matrix that will rotate \p from to \p to. */ -dmnsn_matrix dmnsn_alignment_matrix(dmnsn_vector from, dmnsn_vector to, - dmnsn_vector axis1, dmnsn_vector axis2); +dmnsn_matrix dmnsn_alignment_matrix(dmnsn_vector from, dmnsn_vector to, dmnsn_vector axis1, dmnsn_vector axis2); /** Invert a matrix. */ -dmnsn_matrix dmnsn_matrix_inverse(dmnsn_matrix A); +dmnsn_matrix dmnsn_matrix_inverse(dmnsn_matrix M); /** Multiply two matricies. */ -dmnsn_matrix dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs); +DMNSN_INLINE dmnsn_matrix dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs) +{ + dmnsn_matrix M; + + unsigned int i, j, k; + for (i = 0; i < 3; ++i) { + for (j = 0; j < 3; ++j) { + M.n[i][j] = 0.0; + for (k = 0; k < 3; ++k) { + M.n[i][j] += lhs.n[i][k]*rhs.n[k][j]; + } + } + + M.n[i][3] = lhs.n[i][3]; + for (k = 0; k < 3; ++k) { + M.n[i][3] += lhs.n[i][k]*rhs.n[k][3]; + } + } + + return M; +} /** Transform a point by a matrix. */ DMNSN_INLINE dmnsn_vector -dmnsn_transform_point(dmnsn_matrix T, dmnsn_vector v) +dmnsn_transform_point(dmnsn_matrix M, dmnsn_vector v) { - /* 9 multiplications, 9 additions */ dmnsn_vector r; - r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z + T.n[0][3]; - r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z + T.n[1][3]; - r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z + T.n[2][3]; + unsigned int i, j; + for (i = 0; i < 3; ++i) { + r.n[i] = M.n[i][3]; + for (j = 0; j < 3; ++j) { + r.n[i] += M.n[i][j]*v.n[j]; + } + } return r; } /** Transform a direction by a matrix. */ DMNSN_INLINE dmnsn_vector -dmnsn_transform_direction(dmnsn_matrix T, dmnsn_vector v) +dmnsn_transform_direction(dmnsn_matrix M, dmnsn_vector v) { - /* 9 multiplications, 6 additions */ dmnsn_vector r; - r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z; - r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z; - r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z; + unsigned int i, j; + for (i = 0; i < 3; ++i) { + r.n[i] = 0.0; + for (j = 0; j < 3; ++j) { + r.n[i] += M.n[i][j]*v.n[j]; + } + } return r; } /** * Transform a pseudovector by a matrix. - * @param[in] Tinv The inverse of the transformation matrix. - * @param[in] v The pseudovector to transform + * @param[in] Minv The inverse of the transformation matrix. + * @param[in] v The pseudovector to transform. * @return The transformed pseudovector. */ DMNSN_INLINE dmnsn_vector -dmnsn_transform_normal(dmnsn_matrix Tinv, dmnsn_vector v) +dmnsn_transform_normal(dmnsn_matrix Minv, dmnsn_vector v) { - /* Multiply by the transpose of the inverse - (9 multiplications, 6 additions) */ + /* Multiply by the transpose of the inverse */ dmnsn_vector r; - r.x = Tinv.n[0][0]*v.x + Tinv.n[1][0]*v.y + Tinv.n[2][0]*v.z; - r.y = Tinv.n[0][1]*v.x + Tinv.n[1][1]*v.y + Tinv.n[2][1]*v.z; - r.z = Tinv.n[0][2]*v.x + Tinv.n[1][2]*v.y + Tinv.n[2][2]*v.z; + unsigned int i, j; + for (i = 0; i < 3; ++i) { + r.n[i] = 0.0; + for (j = 0; j < 3; ++j) { + r.n[i] += Minv.n[j][i]*v.n[j]; + } + } return r; } -/** - * Transform a ray by a matrix. - * \f$ n' = T(l.\vec{x_0} + l.\vec{n}) - T(l.\vec{x_0}) \f$, - * \f$ \vec{x_0}' = T(l.\vec{x_0}) \f$ - */ +/** Transform a ray by a matrix. */ DMNSN_INLINE dmnsn_ray -dmnsn_transform_ray(dmnsn_matrix T, dmnsn_ray l) +dmnsn_transform_ray(dmnsn_matrix M, dmnsn_ray l) { - /* 18 multiplications, 15 additions */ dmnsn_ray ret; - ret.x0 = dmnsn_transform_point(T, l.x0); - ret.n = dmnsn_transform_direction(T, l.n); + ret.x0 = dmnsn_transform_point(M, l.x0); + ret.n = dmnsn_transform_direction(M, l.n); return ret; } /** Transform a bounding box by a matrix. */ -dmnsn_aabb dmnsn_transform_aabb(dmnsn_matrix T, dmnsn_aabb box); +dmnsn_aabb dmnsn_transform_aabb(dmnsn_matrix M, dmnsn_aabb box); /** Return whether a matrix contains any NaN components. */ DMNSN_INLINE bool -dmnsn_matrix_isnan(dmnsn_matrix m) +dmnsn_matrix_isnan(dmnsn_matrix M) { - size_t i, j; + unsigned int i, j; for (i = 0; i < 3; ++i) { for (j = 0; j < 4; ++j) { - if (dmnsn_isnan(m.n[i][j])) { + if (dmnsn_isnan(M.n[i][j])) { return true; } } |