1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
//! Benchmark for various NearestNeighbors implementations.
use acap::euclid::Euclidean;
use acap::exhaustive::ExhaustiveSearch;
use acap::kd::KdTree;
use acap::vp::{FlatVpTree, VpTree};
use acap::NearestNeighbors;
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use std::iter::FromIterator;
type Point = Euclidean<[f32; 3]>;
/// Generates a spiral used as the benchmark data set.
fn spiral() -> Vec<Point> {
let mut points = Vec::new();
let size = 1000;
let turns = 10.0;
for i in 0..size {
let y = 2.0 * (i as f32) / (size as f32) - 1.0;
let m = (1.0 - y * y).sqrt();
let theta = turns * y * std::f32::consts::PI;
let (sin, cos) = theta.sin_cos();
let x = m * cos * cos;
let z = m * sin * cos;
points.push(Euclidean([x, y, z]));
}
points
}
fn bench_from_iter(c: &mut Criterion) {
let points = black_box(spiral());
let mut group = c.benchmark_group("from_iter");
group.bench_function("ExhaustiveSearch", |b| b.iter(|| ExhaustiveSearch::from_iter(points.clone())));
group.bench_function("VpTree", |b| b.iter(|| VpTree::from_iter(points.clone())));
group.bench_function("FlatVpTree", |b| b.iter(|| FlatVpTree::from_iter(points.clone())));
group.bench_function("KdTree", |b| b.iter(|| KdTree::from_iter(points.clone())));
group.finish();
}
fn bench_nearest_neighbors(c: &mut Criterion) {
let points = black_box(spiral());
let target = black_box(Euclidean([0.0, 0.0, 0.0]));
let exhaustive = ExhaustiveSearch::from_iter(points.clone());
let vp_tree = VpTree::from_iter(points.clone());
let flat_vp_tree = FlatVpTree::from_iter(points.clone());
let kd_tree = KdTree::from_iter(points.clone());
let mut nearest = c.benchmark_group("NearestNeighbors::nearest");
nearest.bench_function("ExhaustiveSearch", |b| b.iter(|| exhaustive.nearest(&target)));
nearest.bench_function("VpTree", |b| b.iter(|| vp_tree.nearest(&target)));
nearest.bench_function("FlatVpTree", |b| b.iter(|| flat_vp_tree.nearest(&target)));
nearest.bench_function("KdTree", |b| b.iter(|| kd_tree.nearest(&target)));
nearest.finish();
let mut nearest_within = c.benchmark_group("NearestNeighbors::nearest_within");
nearest_within.bench_function("ExhaustiveSearch", |b| b.iter(|| exhaustive.nearest_within(&target, 0.1)));
nearest_within.bench_function("VpTree", |b| b.iter(|| vp_tree.nearest_within(&target, 0.1)));
nearest_within.bench_function("FlatVpTree", |b| b.iter(|| flat_vp_tree.nearest_within(&target, 0.1)));
nearest_within.bench_function("KdTree", |b| b.iter(|| kd_tree.nearest_within(&target, 0.1)));
nearest_within.finish();
let mut k_nearest = c.benchmark_group("NearestNeighbors::k_nearest");
k_nearest.bench_function("ExhaustiveSearch", |b| b.iter(|| exhaustive.k_nearest(&target, 3)));
k_nearest.bench_function("VpTree", |b| b.iter(|| vp_tree.k_nearest(&target, 3)));
k_nearest.bench_function("FlatVpTree", |b| b.iter(|| flat_vp_tree.k_nearest(&target, 3)));
k_nearest.bench_function("KdTree", |b| b.iter(|| kd_tree.k_nearest(&target, 3)));
k_nearest.finish();
let mut k_nearest_within = c.benchmark_group("NearestNeighbors::k_nearest_within");
k_nearest_within.bench_function("ExhaustiveSearch", |b| b.iter(|| exhaustive.k_nearest_within(&target, 3, 0.1)));
k_nearest_within.bench_function("VpTree", |b| b.iter(|| vp_tree.k_nearest_within(&target, 3, 0.1)));
k_nearest_within.bench_function("FlatVpTree", |b| b.iter(|| flat_vp_tree.k_nearest_within(&target, 3, 0.1)));
k_nearest_within.bench_function("KdTree", |b| b.iter(|| kd_tree.k_nearest_within(&target, 3, 0.1)));
k_nearest_within.finish();
}
criterion_group!(benches, bench_from_iter, bench_nearest_neighbors);
criterion_main!(benches);
|