1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
//! [Dynamization](https://en.wikipedia.org/wiki/Dynamization) for nearest neighbor search.
use super::kd::KdTree;
use super::vp::VpTree;
use super::{Metric, NearestNeighbors, Neighborhood};
use std::iter::{self, Extend, FromIterator};
/// The number of bits dedicated to the flat buffer.
const BUFFER_BITS: usize = 6;
/// The maximum size of the buffer.
const BUFFER_SIZE: usize = 1 << BUFFER_BITS;
/// A dynamic wrapper for a static nearest neighbor search data structure.
///
/// This type applies [dynamization](https://en.wikipedia.org/wiki/Dynamization) to an arbitrary
/// nearest neighbor search structure `T`, allowing new items to be added dynamically.
#[derive(Debug)]
pub struct Forest<T: IntoIterator> {
/// A flat buffer used for the first few items, to avoid repeatedly rebuilding small trees.
buffer: Vec<T::Item>,
/// The trees of the forest, with sizes in geometric progression.
trees: Vec<Option<T>>,
}
impl<T, U> Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
/// Create a new empty forest.
pub fn new() -> Self {
Self {
buffer: Vec::new(),
trees: Vec::new(),
}
}
/// Add a new item to the forest.
pub fn push(&mut self, item: T) {
self.extend(iter::once(item));
}
/// Get the number of items in the forest.
pub fn len(&self) -> usize {
let mut len = self.buffer.len();
for (i, slot) in self.trees.iter().enumerate() {
if slot.is_some() {
len += 1 << (i + BUFFER_BITS);
}
}
len
}
/// Check if this forest is empty.
pub fn is_empty(&self) -> bool {
if !self.buffer.is_empty() {
return false;
}
self.trees.iter().flatten().next().is_none()
}
}
impl<T, U> Default for Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn default() -> Self {
Self::new()
}
}
impl<T, U> Extend<T> for Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
self.buffer.extend(items);
if self.buffer.len() < BUFFER_SIZE {
return;
}
let len = self.len();
for i in 0.. {
let bit = 1 << (i + BUFFER_BITS);
if bit > len {
break;
}
if i >= self.trees.len() {
self.trees.push(None);
}
if len & bit == 0 {
if let Some(tree) = self.trees[i].take() {
self.buffer.extend(tree);
}
} else if self.trees[i].is_none() {
let offset = self.buffer.len() - bit;
self.trees[i] = Some(self.buffer.drain(offset..).collect());
}
}
debug_assert!(self.buffer.len() < BUFFER_SIZE);
debug_assert!(self.len() == len);
}
}
impl<T, U> FromIterator<T> for Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
let mut forest = Self::new();
forest.extend(items);
forest
}
}
impl<T: IntoIterator> IntoIterator for Forest<T> {
type Item = T::Item;
type IntoIter = std::vec::IntoIter<T::Item>;
fn into_iter(mut self) -> Self::IntoIter {
self.buffer.extend(self.trees.into_iter().flatten().flatten());
self.buffer.into_iter()
}
}
impl<T, U, V> NearestNeighbors<T, U> for Forest<V>
where
U: Metric<T>,
V: NearestNeighbors<T, U>,
V: IntoIterator<Item = T>,
{
fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
where
T: 'a,
U: 'b,
N: Neighborhood<&'a T, &'b U>,
{
for item in &self.buffer {
neighborhood.consider(item);
}
self.trees
.iter()
.flatten()
.fold(neighborhood, |n, t| t.search(n))
}
}
/// A forest of k-d trees.
pub type KdForest<T> = Forest<KdTree<T>>;
/// A forest of vantage-point trees.
pub type VpForest<T> = Forest<VpTree<T>>;
#[cfg(test)]
mod tests {
use super::*;
use crate::metric::tests::test_nearest_neighbors;
use crate::metric::ExhaustiveSearch;
#[test]
fn test_exhaustive_forest() {
test_nearest_neighbors(Forest::<ExhaustiveSearch<_>>::from_iter);
}
#[test]
fn test_forest_forest() {
test_nearest_neighbors(Forest::<Forest<ExhaustiveSearch<_>>>::from_iter);
}
#[test]
fn test_kd_forest() {
test_nearest_neighbors(KdForest::from_iter);
}
#[test]
fn test_vp_forest() {
test_nearest_neighbors(VpForest::from_iter);
}
}
|