diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2020-06-24 15:20:02 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2020-06-24 15:44:14 -0400 |
commit | 39c0348c9f98b4dd29bd112a0a2a42faa67c92d4 (patch) | |
tree | 6c8ed80bd8cbbb0af79c9ac57bdb39634fa178fd /src/metric.rs | |
parent | adaafdd7043507cbceae65e78c38954e47103b5c (diff) | |
download | kd-forest-39c0348c9f98b4dd29bd112a0a2a42faa67c92d4.tar.xz |
Diffstat (limited to 'src/metric.rs')
-rw-r--r-- | src/metric.rs | 546 |
1 files changed, 0 insertions, 546 deletions
diff --git a/src/metric.rs b/src/metric.rs deleted file mode 100644 index d9938e4..0000000 --- a/src/metric.rs +++ /dev/null @@ -1,546 +0,0 @@ -//! [Metric spaces](https://en.wikipedia.org/wiki/Metric_space). - -pub mod approx; -pub mod forest; -pub mod kd; -pub mod soft; -pub mod vp; - -use std::cmp::Ordering; -use std::collections::BinaryHeap; -use std::iter::FromIterator; - -/// A wrapper that converts a partial ordering into a total one by panicking. -#[derive(Debug, PartialEq, PartialOrd)] -struct Ordered<T>(T); - -impl<T: PartialOrd> Ord for Ordered<T> { - fn cmp(&self, other: &Self) -> Ordering { - self.partial_cmp(other).unwrap() - } -} - -impl<T: PartialEq> Eq for Ordered<T> {} - -/// An [order embedding](https://en.wikipedia.org/wiki/Order_embedding) for distances. -/// -/// Implementations of this trait must satisfy, for all non-negative distances `x` and `y`: -/// -/// * `x == Self::from(x).into()` -/// * `x <= y` iff `Self::from(x) <= Self::from(y)` -/// -/// This trait exists to optimize the common case where distances can be compared more efficiently -/// than their exact values can be computed. For example, taking the square root can be avoided -/// when comparing Euclidean distances (see [SquaredDistance]). -pub trait Distance: Copy + From<f64> + Into<f64> + PartialOrd {} - -impl Distance for f64 {} - -/// A squared distance, to avoid computing square roots unless absolutely necessary. -#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)] -pub struct SquaredDistance(f64); - -impl SquaredDistance { - /// Create a SquaredDistance from an already squared value. - pub fn from_squared(value: f64) -> Self { - Self(value) - } -} - -impl From<f64> for SquaredDistance { - fn from(value: f64) -> Self { - Self::from_squared(value * value) - } -} - -impl From<SquaredDistance> for f64 { - fn from(value: SquaredDistance) -> Self { - value.0.sqrt() - } -} - -impl Distance for SquaredDistance {} - -/// A [metric space](https://en.wikipedia.org/wiki/Metric_space). -pub trait Metric<T: ?Sized = Self> { - /// The type used to represent distances. - type Distance: Distance; - - /// Computes the distance between this point and another point. This function must satisfy - /// three conditions: - /// - /// * `x.distance(y) == 0` iff `x == y` (identity of indiscernibles) - /// * `x.distance(y) == y.distance(x)` (symmetry) - /// * `x.distance(z) <= x.distance(y) + y.distance(z)` (triangle inequality) - fn distance(&self, other: &T) -> Self::Distance; -} - -/// Blanket [Metric] implementation for references. -impl<'a, 'b, T, U: Metric<T>> Metric<&'a T> for &'b U { - type Distance = U::Distance; - - fn distance(&self, other: &&'a T) -> Self::Distance { - (*self).distance(other) - } -} - -/// The standard [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance) metric. -impl Metric for [f64] { - type Distance = SquaredDistance; - - fn distance(&self, other: &Self) -> Self::Distance { - debug_assert!(self.len() == other.len()); - - let mut sum = 0.0; - for i in 0..self.len() { - let diff = self[i] - other[i]; - sum += diff * diff; - } - - Self::Distance::from_squared(sum) - } -} - -/// A nearest neighbor to a target. -#[derive(Clone, Copy, Debug, PartialEq)] -pub struct Neighbor<T> { - /// The found item. - pub item: T, - /// The distance from the target. - pub distance: f64, -} - -impl<T> Neighbor<T> { - /// Create a new Neighbor. - pub fn new(item: T, distance: f64) -> Self { - Self { item, distance } - } -} - -/// A candidate nearest neighbor found during a search. -#[derive(Debug)] -struct Candidate<T, D> { - item: T, - distance: D, -} - -impl<T, D: Distance> Candidate<T, D> { - fn new<U>(target: U, item: T) -> Self - where - U: Metric<T, Distance = D>, - { - let distance = target.distance(&item); - Self { item, distance } - } - - fn into_neighbor(self) -> Neighbor<T> { - Neighbor::new(self.item, self.distance.into()) - } -} - -impl<T, D: Distance> PartialOrd for Candidate<T, D> { - fn partial_cmp(&self, other: &Self) -> Option<Ordering> { - self.distance.partial_cmp(&other.distance) - } -} - -impl<T, D: Distance> Ord for Candidate<T, D> { - fn cmp(&self, other: &Self) -> Ordering { - self.partial_cmp(other).unwrap() - } -} - -impl<T, D: Distance> PartialEq for Candidate<T, D> { - fn eq(&self, other: &Self) -> bool { - self.distance.eq(&other.distance) - } -} - -impl<T, D: Distance> Eq for Candidate<T, D> {} - -/// Accumulates nearest neighbor search results. -pub trait Neighborhood<T, U: Metric<T>> { - /// Returns the target of the nearest neighbor search. - fn target(&self) -> U; - - /// Check whether a distance is within this neighborhood. - fn contains(&self, distance: f64) -> bool { - distance < 0.0 || self.contains_distance(distance.into()) - } - - /// Check whether a distance is within this neighborhood. - fn contains_distance(&self, distance: U::Distance) -> bool; - - /// Consider a new candidate neighbor. - fn consider(&mut self, item: T) -> U::Distance; -} - -/// A [Neighborhood] with at most one result. -#[derive(Debug)] -struct SingletonNeighborhood<T, U: Metric<T>> { - /// The target of the nearest neighbor search. - target: U, - /// The current threshold distance to the farthest result. - threshold: Option<U::Distance>, - /// The current nearest neighbor, if any. - candidate: Option<Candidate<T, U::Distance>>, -} - -impl<T, U> SingletonNeighborhood<T, U> -where - U: Copy + Metric<T>, -{ - /// Create a new single metric result tracker. - /// - /// * `target`: The target fo the nearest neighbor search. - /// * `threshold`: The maximum allowable distance. - fn new(target: U, threshold: Option<f64>) -> Self { - Self { - target, - threshold: threshold.map(U::Distance::from), - candidate: None, - } - } - - /// Consider a candidate. - fn push(&mut self, candidate: Candidate<T, U::Distance>) -> U::Distance { - let distance = candidate.distance; - - if self.contains_distance(distance) { - self.threshold = Some(distance); - self.candidate = Some(candidate); - } - - distance - } - - /// Convert this result into an optional neighbor. - fn into_option(self) -> Option<Neighbor<T>> { - self.candidate.map(Candidate::into_neighbor) - } -} - -impl<T, U> Neighborhood<T, U> for SingletonNeighborhood<T, U> -where - U: Copy + Metric<T>, -{ - fn target(&self) -> U { - self.target - } - - fn contains_distance(&self, distance: U::Distance) -> bool { - self.threshold.map(|t| distance <= t).unwrap_or(true) - } - - fn consider(&mut self, item: T) -> U::Distance { - self.push(Candidate::new(self.target, item)) - } -} - -/// A [Neighborhood] of up to `k` results, using a binary heap. -#[derive(Debug)] -struct HeapNeighborhood<T, U: Metric<T>> { - /// The target of the nearest neighbor search. - target: U, - /// The number of nearest neighbors to find. - k: usize, - /// The current threshold distance to the farthest result. - threshold: Option<U::Distance>, - /// A max-heap of the best candidates found so far. - heap: BinaryHeap<Candidate<T, U::Distance>>, -} - -impl<T, U> HeapNeighborhood<T, U> -where - U: Copy + Metric<T>, -{ - /// Create a new metric result tracker. - /// - /// * `target`: The target fo the nearest neighbor search. - /// * `k`: The number of nearest neighbors to find. - /// * `threshold`: The maximum allowable distance. - fn new(target: U, k: usize, threshold: Option<f64>) -> Self { - Self { - target, - k, - threshold: threshold.map(U::Distance::from), - heap: BinaryHeap::with_capacity(k), - } - } - - /// Consider a candidate. - fn push(&mut self, candidate: Candidate<T, U::Distance>) -> U::Distance { - let distance = candidate.distance; - - if self.contains_distance(distance) { - let heap = &mut self.heap; - - if heap.len() == self.k { - heap.pop(); - } - - heap.push(candidate); - - if heap.len() == self.k { - self.threshold = self.heap.peek().map(|c| c.distance) - } - } - - distance - } - - /// Convert these results into a vector of neighbors. - fn into_vec(self) -> Vec<Neighbor<T>> { - self.heap - .into_sorted_vec() - .into_iter() - .map(Candidate::into_neighbor) - .collect() - } -} - -impl<T, U> Neighborhood<T, U> for HeapNeighborhood<T, U> -where - U: Copy + Metric<T>, -{ - fn target(&self) -> U { - self.target - } - - fn contains_distance(&self, distance: U::Distance) -> bool { - self.k > 0 && self.threshold.map(|t| distance <= t).unwrap_or(true) - } - - fn consider(&mut self, item: T) -> U::Distance { - self.push(Candidate::new(self.target, item)) - } -} - -/// A [nearest neighbor search](https://en.wikipedia.org/wiki/Nearest_neighbor_search) index. -/// -/// Type parameters: -/// * `T`: The search result type. -/// * `U`: The query type. -pub trait NearestNeighbors<T, U: Metric<T> = T> { - /// Returns the nearest neighbor to `target` (or `None` if this index is empty). - fn nearest(&self, target: &U) -> Option<Neighbor<&T>> { - self.search(SingletonNeighborhood::new(target, None)) - .into_option() - } - - /// Returns the nearest neighbor to `target` within the distance `threshold`, if one exists. - fn nearest_within(&self, target: &U, threshold: f64) -> Option<Neighbor<&T>> { - self.search(SingletonNeighborhood::new(target, Some(threshold))) - .into_option() - } - - /// Returns the up to `k` nearest neighbors to `target`. - fn k_nearest(&self, target: &U, k: usize) -> Vec<Neighbor<&T>> { - self.search(HeapNeighborhood::new(target, k, None)) - .into_vec() - } - - /// Returns the up to `k` nearest neighbors to `target` within the distance `threshold`. - fn k_nearest_within(&self, target: &U, k: usize, threshold: f64) -> Vec<Neighbor<&T>> { - self.search(HeapNeighborhood::new(target, k, Some(threshold))) - .into_vec() - } - - /// Search for nearest neighbors and add them to a neighborhood. - fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N - where - T: 'a, - U: 'b, - N: Neighborhood<&'a T, &'b U>; -} - -/// A [NearestNeighbors] implementation that does exhaustive search. -#[derive(Debug)] -pub struct ExhaustiveSearch<T>(Vec<T>); - -impl<T> ExhaustiveSearch<T> { - /// Create an empty ExhaustiveSearch index. - pub fn new() -> Self { - Self(Vec::new()) - } - - /// Add a new item to the index. - pub fn push(&mut self, item: T) { - self.0.push(item); - } - - /// Get the size of this index. - pub fn len(&self) -> usize { - self.0.len() - } - - /// Check if this index is empty. - pub fn is_empty(&self) -> bool { - self.0.is_empty() - } -} - -impl<T> Default for ExhaustiveSearch<T> { - fn default() -> Self { - Self::new() - } -} - -impl<T> FromIterator<T> for ExhaustiveSearch<T> { - fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self { - Self(items.into_iter().collect()) - } -} - -impl<T> IntoIterator for ExhaustiveSearch<T> { - type Item = T; - type IntoIter = std::vec::IntoIter<T>; - - fn into_iter(self) -> Self::IntoIter { - self.0.into_iter() - } -} - -impl<T> Extend<T> for ExhaustiveSearch<T> { - fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { - for value in iter { - self.push(value); - } - } -} - -impl<T, U: Metric<T>> NearestNeighbors<T, U> for ExhaustiveSearch<T> { - fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N - where - T: 'a, - U: 'b, - N: Neighborhood<&'a T, &'b U>, - { - for e in &self.0 { - neighborhood.consider(e); - } - neighborhood - } -} - -#[cfg(test)] -pub mod tests { - use super::*; - - use rand::prelude::*; - - #[derive(Clone, Copy, Debug, PartialEq)] - pub struct Point(pub [f64; 3]); - - impl Metric for Point { - type Distance = SquaredDistance; - - fn distance(&self, other: &Self) -> Self::Distance { - self.0.distance(&other.0) - } - } - - /// Test a [NearestNeighbors] impl. - pub fn test_nearest_neighbors<T, F>(from_iter: F) - where - T: NearestNeighbors<Point>, - F: Fn(Vec<Point>) -> T, - { - test_empty(&from_iter); - test_pythagorean(&from_iter); - test_random_points(&from_iter); - } - - fn test_empty<T, F>(from_iter: &F) - where - T: NearestNeighbors<Point>, - F: Fn(Vec<Point>) -> T, - { - let points = Vec::new(); - let index = from_iter(points); - let target = Point([0.0, 0.0, 0.0]); - assert_eq!(index.nearest(&target), None); - assert_eq!(index.nearest_within(&target, 1.0), None); - assert!(index.k_nearest(&target, 0).is_empty()); - assert!(index.k_nearest(&target, 3).is_empty()); - assert!(index.k_nearest_within(&target, 0, 1.0).is_empty()); - assert!(index.k_nearest_within(&target, 3, 1.0).is_empty()); - } - - fn test_pythagorean<T, F>(from_iter: &F) - where - T: NearestNeighbors<Point>, - F: Fn(Vec<Point>) -> T, - { - let points = vec![ - Point([3.0, 4.0, 0.0]), - Point([5.0, 0.0, 12.0]), - Point([0.0, 8.0, 15.0]), - Point([1.0, 2.0, 2.0]), - Point([2.0, 3.0, 6.0]), - Point([4.0, 4.0, 7.0]), - ]; - let index = from_iter(points); - let target = Point([0.0, 0.0, 0.0]); - - assert_eq!( - index.nearest(&target), - Some(Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0)) - ); - - assert_eq!(index.nearest_within(&target, 2.0), None); - assert_eq!( - index.nearest_within(&target, 4.0), - Some(Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0)) - ); - - assert!(index.k_nearest(&target, 0).is_empty()); - assert_eq!( - index.k_nearest(&target, 3), - vec![ - Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0), - Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0), - Neighbor::new(&Point([2.0, 3.0, 6.0]), 7.0), - ] - ); - - assert!(index.k_nearest(&target, 0).is_empty()); - assert_eq!( - index.k_nearest_within(&target, 3, 6.0), - vec![ - Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0), - Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0), - ] - ); - assert_eq!( - index.k_nearest_within(&target, 3, 8.0), - vec![ - Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0), - Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0), - Neighbor::new(&Point([2.0, 3.0, 6.0]), 7.0), - ] - ); - } - - fn test_random_points<T, F>(from_iter: &F) - where - T: NearestNeighbors<Point>, - F: Fn(Vec<Point>) -> T, - { - let mut points = Vec::new(); - for _ in 0..255 { - points.push(Point([random(), random(), random()])); - } - let target = Point([random(), random(), random()]); - - let eindex = ExhaustiveSearch::from_iter(points.clone()); - let index = from_iter(points); - - assert_eq!(index.k_nearest(&target, 3), eindex.k_nearest(&target, 3)); - } - - #[test] - fn test_exhaustive_index() { - test_nearest_neighbors(ExhaustiveSearch::from_iter); - } -} |