diff options
Diffstat (limited to 'libdimension/polynomial.c')
-rw-r--r-- | libdimension/polynomial.c | 198 |
1 files changed, 109 insertions, 89 deletions
diff --git a/libdimension/polynomial.c b/libdimension/polynomial.c index 14c33d0..6e2aed2 100644 --- a/libdimension/polynomial.c +++ b/libdimension/polynomial.c @@ -27,7 +27,7 @@ static inline size_t dmnsn_solve_linear(const double poly[2], double x[1]) { x[0] = -poly[0]/poly[1]; - return (x[0] > 0.0) ? 1 : 0; + return (x[0] >= dmnsn_epsilon) ? 1 : 0; } static inline size_t @@ -38,34 +38,18 @@ dmnsn_solve_quadratic(const double poly[3], double x[2]) double s = sqrt(disc); x[0] = (-poly[1] + s)/(2.0*poly[2]); x[1] = (-poly[1] - s)/(2.0*poly[2]); - return (x[0] > 0.0) ? ((x[1] > 0.0) ? 2 : 1) : 0; + return (x[0] >= dmnsn_epsilon) ? ((x[1] >= dmnsn_epsilon) ? 2 : 1) : 0; } else { return 0; } } -/* Eliminate trivial zero roots from poly[] */ -static inline void -dmnsn_eliminate_zero_roots(double poly[], size_t *degree) -{ - size_t i, deg = *degree; - for (i = 0; i <= deg && poly[i] == 0.0; ++i); - - if (i > 0) { - for (size_t j = 0; j + i <= deg; ++j) { - poly[j] = poly[j + i]; - } - } - - *degree -= i; -} - /* Get the real degree of a polynomial, ignoring leading zeros */ static inline size_t dmnsn_real_degree(const double poly[], size_t degree) { for (ssize_t i = degree; i >= 0; ++i) { - if (poly[i] != 0.0) { + if (fabs(poly[i]) >= dmnsn_epsilon) { return i; } } @@ -73,56 +57,20 @@ dmnsn_real_degree(const double poly[], size_t degree) return 0; } -/* Use the false position method to find a root in a range that contains exactly - one root */ -static inline double -dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) +/* Eliminate trivial zero roots from poly[] */ +static inline void +dmnsn_eliminate_zero_roots(double poly[], size_t *degree) { - double evmin = dmnsn_evaluate_polynomial(poly, degree, min); - double evmax = dmnsn_evaluate_polynomial(poly, degree, max); - double mid = 0.0, evmid; - int lastsign = -1; - - if (max - min <= dmnsn_epsilon) - return min; + size_t i, deg = *degree; + for (i = 0; i <= deg && fabs(poly[i]) < dmnsn_epsilon; ++i); - do { - mid = (min*evmax - max*evmin)/(evmax - evmin); - evmid = dmnsn_evaluate_polynomial(poly, degree, mid); - int sign = dmnsn_signbit(evmid); - if (sign == dmnsn_signbit(evmax)) { - max = mid; - evmax = evmid; - if (sign == lastsign) { - /* Don't allow the algorithm to keep the same endpoint for three - iterations in a row; this ensures superlinear convergence */ - evmin /= 2.0; - } - } else { - min = mid; - evmin = evmid; - if (sign == lastsign) { - evmax /= 2.0; - } + if (i > 0) { + for (size_t j = 0; j + i <= deg; ++j) { + poly[j] = poly[j + i]; } - - lastsign = sign; - } while (fabs(evmid) > fabs(mid)*dmnsn_epsilon); - - return mid; -} - -/* Use synthetic division to eliminate the root `r' from poly[] */ -static inline void -dmnsn_eliminate_root(double poly[], size_t *degree, double r) -{ - double rem = poly[*degree]; - for (ssize_t i = *degree - 1; i >= 0; --i) { - double temp = poly[i]; - poly[i] = rem; - rem = temp + r*rem; } - --*degree; + + *degree -= i; } /* Returns the number of sign changes between coefficients of `poly' */ @@ -132,7 +80,7 @@ dmnsn_descartes_rule(const double poly[], size_t degree) int lastsign = 0; size_t i; for (i = 0; i <= degree; ++i) { - if (poly[i] != 0.0) { + if (fabs(poly[i]) >= dmnsn_epsilon) { lastsign = dmnsn_signbit(poly[i]); break; } @@ -141,7 +89,7 @@ dmnsn_descartes_rule(const double poly[], size_t degree) size_t changes = 0; for (++i; i <= degree; ++i) { int sign = dmnsn_signbit(poly[i]); - if (poly[i] != 0.0 && sign != lastsign) { + if (fabs(poly[i]) >= dmnsn_epsilon && sign != lastsign) { lastsign = sign; ++changes; } @@ -199,11 +147,29 @@ dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2], bounds[0][1] = INFINITY; return 1; } else { + /* Number of roots found so far */ size_t n = 0; + /* First divide poly[] by (x - 1) to test for a root at x = 1 */ + double pdiv1[degree], rem = poly[degree]; + for (ssize_t i = degree - 1; i >= 0; --i) { + pdiv1[i] = rem; + rem += poly[i]; + } + if (fabs(rem) < dmnsn_epsilon) { + bounds[n][0] = 1.0; + bounds[n][1] = 1.0; + ++n; + if (n == max_roots) + return n; + + --degree; + poly = pdiv1; + } + /* a[] is the expanded form of poly(x + 1), b[] is the expanded form of (x + 1)^degree * poly(1/(x + 1)) */ - double a[degree], b[degree]; + double a[degree + 1], b[degree + 1]; for (size_t i = 0; i <= degree; ++i) { a[i] = poly[i]; b[i] = poly[degree - i]; @@ -214,18 +180,10 @@ dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2], } } - /* Test for a root at 1.0 */ - if (a[0] == 0.0) { - bounds[n][0] = 1.0; - bounds[n][1] = 1.0; - ++n; - if (n == max_roots) - return n; - } - /* Recursively test for roots in b[] */ size_t nb = dmnsn_uspensky_bounds(b, degree, bounds + n, max_roots - n); for (size_t i = n; i < n + nb; ++i) { + /* Transform the found roots of b[] into roots of poly[] */ double temp = bounds[i][0]; bounds[i][0] = 1.0/(bounds[i][1] + 1.0); bounds[i][1] = 1.0/(temp + 1.0); @@ -237,6 +195,7 @@ dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2], /* Recursively test for roots in a[] */ size_t na = dmnsn_uspensky_bounds(a, degree, bounds + n, max_roots - n); for (size_t i = n; i < n + na; ++i) { + /* Transform the found roots of a[] into roots of poly[] */ bounds[i][0] += 1.0; bounds[i][1] += 1.0; } @@ -246,35 +205,96 @@ dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2], } } -/* Modified Uspensky's algorithm */ +/* Calculate a finite upper bound for the roots of poly[] */ +static inline double +dmnsn_root_bound(double poly[], size_t degree) +{ + double bound = 0.0; + for (size_t i = 0; i < degree; ++i) { + bound = dmnsn_max(bound, fabs(poly[i])); + } + bound /= fabs(poly[degree]); + bound += 1.0; + return bound; +} + +/* Use the false position method to find a root in a range that contains exactly + one root */ +static inline double +dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) +{ + double evmin = dmnsn_evaluate_polynomial(poly, degree, min); + double evmax = dmnsn_evaluate_polynomial(poly, degree, max); + double mid = 0.0, evmid; + int lastsign = -1; + + if (max - min < dmnsn_epsilon) + return min; + + do { + mid = (min*evmax - max*evmin)/(evmax - evmin); + evmid = dmnsn_evaluate_polynomial(poly, degree, mid); + int sign = dmnsn_signbit(evmid); + if (sign == dmnsn_signbit(evmax)) { + max = mid; + evmax = evmid; + if (sign == lastsign) { + /* Don't allow the algorithm to keep the same endpoint for three + iterations in a row; this ensures superlinear convergence */ + evmin /= 2.0; + } + } else { + min = mid; + evmin = evmid; + if (sign == lastsign) { + evmax /= 2.0; + } + } + + lastsign = sign; + } while (fabs(evmid) >= fabs(mid)*dmnsn_epsilon); + + return mid; +} + +/* Use synthetic division to eliminate the root `r' from poly[] */ +static inline void +dmnsn_eliminate_root(double poly[], size_t *degree, double r) +{ + double rem = poly[*degree]; + for (ssize_t i = *degree - 1; i >= 0; --i) { + double temp = poly[i]; + poly[i] = rem; + rem = temp + r*rem; + } + --*degree; +} + +/* Uspensky's algorithm */ size_t dmnsn_solve_polynomial(const double poly[], size_t degree, double x[]) { /* Copy the polynomial so we can be destructive */ double p[degree + 1]; - for (ssize_t i = degree; i >= 0; --i) { + for (size_t i = 0; i <= degree; ++i) { p[i] = poly[i]; } + /* Index into x[] */ + size_t i = 0; + /* Account for leading zero coefficients */ degree = dmnsn_real_degree(p, degree); /* Eliminate simple zero roots */ dmnsn_eliminate_zero_roots(p, °ree); - size_t i = 0; /* Index into x[] */ - if (degree >= 3) { - /* Find isolating intervals for degree - 2 roots of p[] */ + /* Find isolating intervals for (degree - 2) roots of p[] */ double ranges[degree - 2][2]; size_t n = dmnsn_uspensky_bounds(p, degree, ranges, degree - 2); - /* Calculate an finite upper bound for the roots of p[] */ - double absmax = 0.0; - for (size_t j = 0; j < degree; ++j) { - absmax = dmnsn_max(absmax, fabs(p[j])); - } - absmax /= fabs(p[degree]); - absmax += 1.0; + /* Calculate a finite upper bound for the roots of p[] */ + double absmax = dmnsn_root_bound(p, degree); for (size_t j = 0; j < n; ++j) { /* Replace large or infinite upper bounds with a finite one */ |