diff options
author | Tavian Barnes <tavianator@gmail.com> | 2010-11-10 01:11:22 -0500 |
---|---|---|
committer | Tavian Barnes <tavianator@gmail.com> | 2010-11-10 01:11:22 -0500 |
commit | 516df38e8acff5d1f7022ae5492f814acea1df3c (patch) | |
tree | f5520848197c6e321db91c222ec83c48a5264aed /libdimension | |
parent | 97a9efe5091a5c483f8081d60dccf6029be7ecc4 (diff) | |
download | dimension-516df38e8acff5d1f7022ae5492f814acea1df3c.tar.xz |
Use Newton's method when the root bound is degenerate.
Diffstat (limited to 'libdimension')
-rw-r--r-- | libdimension/dimension/polynomial.h | 12 | ||||
-rw-r--r-- | libdimension/polynomial.c | 32 |
2 files changed, 39 insertions, 5 deletions
diff --git a/libdimension/dimension/polynomial.h b/libdimension/dimension/polynomial.h index e04861f..ffe3014 100644 --- a/libdimension/dimension/polynomial.h +++ b/libdimension/dimension/polynomial.h @@ -41,6 +41,18 @@ dmnsn_evaluate_polynomial(const double poly[], size_t degree, double x) return ret; } +DMNSN_INLINE double +dmnsn_evaluate_polynomial_derivative(const double poly[], size_t degree, + double x) +{ + double ret = poly[degree]*degree; + size_t i; + for (i = degree - 1; i >= 1; --i) { + ret = ret*x + poly[i]*i; + } + return ret; +} + /* Stores the positive roots of poly[] in x[], and returns the number of such roots that were stored */ size_t dmnsn_solve_polynomial(const double poly[], size_t degree, double x[]); diff --git a/libdimension/polynomial.c b/libdimension/polynomial.c index b68d440..f042ef2 100644 --- a/libdimension/polynomial.c +++ b/libdimension/polynomial.c @@ -214,17 +214,39 @@ dmnsn_root_bound(double poly[], size_t degree) return bound; } +/* Improve a root with Newton's method */ +static inline double +dmnsn_improve_root(const double poly[], size_t degree, double x) +{ + double p; + do { + /* Calculate the value of the polynomial and its derivative at once */ + p = poly[degree]; + double dp = 0.0; + for (ssize_t i = degree - 1; i >= 0; --i) { + dp = dp*x + p; + p = p*x + poly[i]; + } + + x -= p/dp; + } while (fabs(p) >= fabs(x)*dmnsn_epsilon); + + return x; +} + /* Use the false position method to find a root in a range that contains exactly one root */ static inline double dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) { - if (max - min < dmnsn_epsilon) - return min; + if (max - min < dmnsn_epsilon) { + /* Bounds are equal, use Newton's method */ + return dmnsn_improve_root(poly, degree, min); + } double evmin = dmnsn_evaluate_polynomial(poly, degree, min); double evmax = dmnsn_evaluate_polynomial(poly, degree, max); - double initial_evmin = evmin, initial_evmax = evmax; + double initial_evmin = fabs(evmin), initial_evmax = fabs(evmax); double mid = 0.0, evmid; int lastsign = -1; @@ -265,8 +287,8 @@ dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) } while (fabs(evmid) >= fabs(mid)*dmnsn_epsilon /* These conditions improve stability when one of the bounds is close to a different root than we are trying to find */ - || fabs(evmid) > fabs(initial_evmin) - || fabs(evmid) > fabs(initial_evmax)); + || fabs(evmid) > initial_evmin + || fabs(evmid) > initial_evmax); return mid; } |