diff options
author | Tavian Barnes <tavianator@gmail.com> | 2011-10-28 15:46:30 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@gmail.com> | 2011-10-31 23:22:02 -0400 |
commit | 2e77183461e11521a37f34e0c01581df762413fc (patch) | |
tree | 9bf1cbabee73c4f0ea2cba878138bb90704b6ba5 /libdimension | |
parent | 6aafcec6823d2b99c40b2ce85ed6581b6c3af3ea (diff) | |
download | dimension-2e77183461e11521a37f34e0c01581df762413fc.tar.xz |
Use Rouillier and Zimmerman's version of the Uspensky algorithm.
Diffstat (limited to 'libdimension')
-rw-r--r-- | libdimension/dimension/geometry.h | 13 | ||||
-rw-r--r-- | libdimension/polynomial.c | 315 | ||||
-rw-r--r-- | libdimension/tests/polynomial.c | 16 |
3 files changed, 153 insertions, 191 deletions
diff --git a/libdimension/dimension/geometry.h b/libdimension/dimension/geometry.h index d2ad362..1248e01 100644 --- a/libdimension/dimension/geometry.h +++ b/libdimension/dimension/geometry.h @@ -124,12 +124,17 @@ dmnsn_degrees(double radians) return radians*45.0/atan(1.0); } -/** Return the sign bit of a scalar. */ +/** Return the sign of a scalar. */ DMNSN_INLINE int -dmnsn_signbit(double n) +dmnsn_sign(double n) { - /* Guarantee a 1 or 0 return, to allow testing two signs for equality */ - return signbit(n) ? 1 : 0; + if (n > 0.0) { + return 1; + } else if (n < 0.0) { + return -1; + } else { + return 0; + } } /* Shorthand for vector/matrix construction */ diff --git a/libdimension/polynomial.c b/libdimension/polynomial.c index 56f087d..86c5ebb 100644 --- a/libdimension/polynomial.c +++ b/libdimension/polynomial.c @@ -20,7 +20,8 @@ /** * @file - * Polynomials. + * Real root isolation algorithm based on work by Vincent, Uspensky, Collins and + * Akritas, Johnson, Krandick, and Rouillier and Zimmerman. */ #include "dimension-internal.h" @@ -41,7 +42,7 @@ dmnsn_real_degree(const double poly[], size_t degree) /** Divide each coefficient by the leading coefficient. */ static inline void -dmnsn_normalize_polynomial(double poly[], size_t degree) +dmnsn_polynomial_normalize(double poly[], size_t degree) { for (size_t i = 0; i < degree; ++i) { poly[i] /= poly[degree]; @@ -50,188 +51,157 @@ dmnsn_normalize_polynomial(double poly[], size_t degree) } /** Eliminate trivial zero roots from \p poly[]. */ -static inline size_t -dmnsn_eliminate_zero_roots(double poly[], size_t degree) +static inline void +dmnsn_eliminate_zero_roots(double **poly, size_t *degree) { size_t i; - for (i = 0; i <= degree && fabs(poly[i]) < dmnsn_epsilon; ++i); - - if (i > 0) { - for (size_t j = 0; j + i <= degree; ++j) { - poly[j] = poly[j + i]; + for (i = 0; i <= *degree; ++i) { + if (fabs((*poly)[i]) >= dmnsn_epsilon) { + break; } } - return degree - i; + *poly += i; + *degree -= i; } -/** Returns the number of sign changes between coefficients of \p poly[]. */ -static inline size_t -dmnsn_descartes_rule(const double poly[], size_t degree) +/** Calculate a finite upper bound on the roots of a normalized polynomial. */ +static inline double +dmnsn_root_bound(const double poly[], size_t degree) { - size_t changes = 0; - int lastsign = dmnsn_signbit(poly[degree]); - for (size_t i = degree; i-- > 0;) { - int sign = dmnsn_signbit(poly[i]); - if (fabs(poly[i]) >= dmnsn_epsilon && sign != lastsign) { - lastsign = sign; - ++changes; - } + double bound = fabs(poly[0]); + for (size_t i = 1; i < degree; ++i) { + bound = dmnsn_max(bound, fabs(poly[i])); } - - return changes; + bound += 1.0; + return bound; } -/** How many levels of Pascal's triangle to precompute. */ -#define DMNSN_NBINOM 11 - -/** Pre-computed values of Pascal's triangle. */ -static const double dmnsn_pascals_triangle[DMNSN_NBINOM][DMNSN_NBINOM] = { - { 1.0 }, - { 1.0, 1.0 }, - { 1.0, 2.0, 1.0 }, - { 1.0, 3.0, 3.0, 1.0 }, - { 1.0, 4.0, 6.0, 4.0, 1.0 }, - { 1.0, 5.0, 10.0, 10.0, 5.0, 1.0 }, - { 1.0, 6.0, 15.0, 20.0, 15.0, 6.0, 1.0 }, - { 1.0, 7.0, 21.0, 35.0, 35.0, 21.0, 7.0, 1.0 }, - { 1.0, 8.0, 28.0, 56.0, 70.0, 56.0, 28.0, 8.0, 1.0 }, - { 1.0, 9.0, 36.0, 84.0, 126.0, 126.0, 84.0, 36.0, 9.0, 1.0 }, - { 1.0, 10.0, 45.0, 120.0, 210.0, 252.0, 210.0, 120.0, 45.0, 10.0, 1.0 } -}; - -/** Compute the (n k) binomial coefficient. */ -static inline double -dmnsn_binom(size_t n, size_t k) +/** Copy a polynomial. */ +static inline void +dmnsn_polynomial_copy(double dest[], const double src[], size_t degree) { - if (k > n - k) { - k = n - k; + for (size_t i = 0; i <= degree; ++i) { + dest[i] = src[i]; } +} - double ret = 1.0; - for (size_t i = 0; i < k; ++i) { - ret *= n - i; - ret /= i + 1; +/** Transform a polynomial by P'(x) = P(x + 1). */ +static inline void +dmnsn_polynomial_translate(double poly[], size_t degree) +{ + for (size_t i = 0; i <= degree; ++i) { + for (size_t j = degree - i; j <= degree - 1; ++j) { + poly[j] += poly[j + 1]; + } } +} - return ret; +/** Transform a polynomial by P'(x) = P(c*x). */ +static inline void +dmnsn_polynomial_scale(double poly[], size_t degree, double c) +{ + double factor = c; + for (size_t i = 1; i <= degree; ++i) { + poly[i] *= factor; + factor *= c; + } } -/** Find ranges that contain a single root, with Uspensky's algorithm. */ +/** Returns the result of Descartes' rule on x^degree * poly(1/(x + 1)). */ static size_t -dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2], - size_t max_roots) +dmnsn_descartes_bound(const double poly[], size_t degree) { - size_t signchanges = dmnsn_descartes_rule(poly, degree); - if (signchanges == 0) { - return 0; - } else if (signchanges == 1) { - bounds[0][0] = +0.0; - bounds[0][1] = INFINITY; - return 1; - } else { - /* Number of roots found so far */ - size_t n = 0; - - /* First divide poly[] by (x - 1) to test for a root at x = 1 */ - double pdiv1[degree], rem = poly[degree]; - for (size_t i = degree; i-- > 0;) { - pdiv1[i] = rem; - rem += poly[i]; - } - if (fabs(rem) < dmnsn_epsilon) { - bounds[n][0] = 1.0; - bounds[n][1] = 1.0; - ++n; - if (n == max_roots) - return n; - - --degree; - poly = pdiv1; - } + /* Copy the polynomial so we can be destructive */ + double p[degree + 1]; + dmnsn_polynomial_copy(p, poly, degree); - /* a[] is the expanded form of poly(x + 1), b[] is the expanded form of - (x + 1)^degree * poly(1/(x + 1)) */ - double a[degree + 1], b[degree + 1]; - if (dmnsn_likely(degree < DMNSN_NBINOM)) { - /* Use precomputed binomial coefficients if possible */ - for (size_t i = 0; i <= degree; ++i) { - a[i] = poly[i]; - b[i] = poly[degree - i]; - for (size_t j = i + 1; j <= degree; ++j) { - double binom = dmnsn_pascals_triangle[j][i]; - a[i] += binom*poly[j]; - b[i] += binom*poly[degree - j]; - } - } - } else { - for (size_t i = 0; i <= degree; ++i) { - a[i] = poly[i]; - b[i] = poly[degree - i]; - for (size_t j = i + 1; j <= degree; ++j) { - double binom = dmnsn_binom(j, i); - a[i] += binom*poly[j]; - b[i] += binom*poly[degree - j]; - } - } + /* Calculate poly(1/(1/x + 1)) which avoids reversal */ + for (size_t i = 1; i <= degree; ++i) { + for (size_t j = i; j >= 1; --j) { + p[j] += p[j - 1]; } + } - /* Recursively test for roots in b[] */ - size_t nb = dmnsn_uspensky_bounds(b, degree, bounds + n, max_roots - n); - for (size_t i = n; i < n + nb; ++i) { - /* Transform the found roots of b[] into roots of poly[] */ - double temp = bounds[i][0]; - bounds[i][0] = 1.0/(bounds[i][1] + 1.0); - bounds[i][1] = 1.0/(temp + 1.0); + /* Find the number of sign changes in p[] */ + size_t changes = 0; + int lastsign = dmnsn_sign(p[0]); + for (size_t i = 1; changes <= 1 && i <= degree; ++i) { + int sign = dmnsn_sign(p[i]); + if (sign != 0 && sign != lastsign) { + ++changes; + lastsign = sign; } - n += nb; - if (n == max_roots) - return n; + } + + return changes; +} - /* Recursively test for roots in a[] */ - size_t na = dmnsn_uspensky_bounds(a, degree, bounds + n, max_roots - n); - for (size_t i = n; i < n + na; ++i) { - /* Transform the found roots of a[] into roots of poly[] */ - bounds[i][0] += 1.0; - bounds[i][1] += 1.0; +/** Depth-first search of possible isolating intervals. */ +static size_t +dmnsn_root_bounds_recursive(double poly[], size_t degree, double *c, double *k, + double bounds[][2], size_t nbounds) +{ + size_t s = dmnsn_descartes_bound(poly, degree); + if (s >= 2) { + *c *= 2.0; + *k /= 2.0; + double currc = *c, currk = *k; + + /* Get the left child */ + dmnsn_polynomial_scale(poly, degree, 1.0/2.0); + + size_t n = dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds); + if (n == nbounds) { + return n; } - n += na; + /* Get the right child from the last tested polynomial */ + dmnsn_polynomial_translate(poly, degree); + dmnsn_polynomial_scale(poly, degree, currk/(*k)); + + *c = currc + 1.0; + *k = currk; + + bounds += n; + nbounds -= n; + n += dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds); return n; + } else if (s == 1) { + bounds[0][0] = (*c)*(*k); + bounds[0][1] = (*c + 1.0)*(*k); + return 1; + } else { + return 0; } } -/** Calculate a finite upper bound for the roots of the normalized polynomial - \p poly[]. */ -static inline double -dmnsn_root_bound(const double poly[], size_t degree) +/** Find ranges that contain a single root. */ +static size_t +dmnsn_root_bounds(const double poly[], size_t degree, double bounds[][2], + size_t nbounds) { - double bound = 0.0; - for (size_t i = 0; i < degree; ++i) { - bound = dmnsn_max(bound, fabs(poly[i])); - } - bound += 1.0; - return bound; -} + /* Copy the polynomial so we can be destructive */ + double p[degree + 1]; + dmnsn_polynomial_copy(p, poly, degree); -/** Improve a root with Newton's method. */ -static inline double -dmnsn_improve_root(const double poly[], size_t degree, double x) -{ - double p; - do { - /* Calculate the value of the polynomial and its derivative at once */ - p = poly[degree]; - double dp = 0.0; - for (size_t i = degree; i-- > 0;) { - dp = dp*x + p; - p = p*x + poly[i]; - } + /* Scale the roots to within (0, 1] */ + double bound = dmnsn_root_bound(p, degree); + dmnsn_polynomial_scale(p, degree, bound); - x -= p/dp; - } while (fabs(p) >= fabs(x)*dmnsn_epsilon); + /* Bounding intervals are of the form (c*k, (c + 1)*k) */ + double c = 0.0, k = 1.0; - return x; + /* Isolate the roots */ + size_t n = dmnsn_root_bounds_recursive(p, degree, &c, &k, bounds, nbounds); + + /* Scale the roots back to within (0, bound] */ + for (size_t i = 0; i < n; ++i) { + bounds[i][0] *= bound; + bounds[i][1] *= bound; + } + + return n; } /** Use the false position method to find a root in a range that contains @@ -239,21 +209,16 @@ dmnsn_improve_root(const double poly[], size_t degree, double x) static inline double dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) { - if (max - min < dmnsn_epsilon) { - /* Bounds are equal, use Newton's method */ - return dmnsn_improve_root(poly, degree, min); - } - double evmin = dmnsn_polynomial_evaluate(poly, degree, min); double evmax = dmnsn_polynomial_evaluate(poly, degree, max); - double initial_evmin = fabs(evmin), initial_evmax = fabs(evmax); - double mid = 0.0, evmid; - int lastsign = -1; + double evinitial = dmnsn_min(fabs(evmin), fabs(evmax)); + double mid, evmid; + int lastsign = 0; do { mid = (min*evmax - max*evmin)/(evmax - evmin); evmid = dmnsn_polynomial_evaluate(poly, degree, mid); - int sign = dmnsn_signbit(evmid); + int sign = dmnsn_sign(evmid); if (mid < min) { /* This can happen due to numerical instability in the root bounding @@ -267,7 +232,7 @@ dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) evmin = evmax; max = mid; evmax = evmid; - } else if (sign == dmnsn_signbit(evmax)) { + } else if (sign == dmnsn_sign(evmax)) { max = mid; evmax = evmid; if (sign == lastsign) { @@ -284,11 +249,11 @@ dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) } lastsign = sign; - } while (fabs(evmid) >= fabs(mid)*dmnsn_epsilon - /* These conditions improve stability when one of the bounds is - close to a different root than we are trying to find */ - || fabs(evmid) > initial_evmin - || fabs(evmid) > initial_evmax); + } while ((fabs(evmid) >= fabs(mid)*dmnsn_epsilon + /* This condition improves stability when one of the bounds is + close to a different root than we are trying to find */ + || fabs(evmid) > evinitial) + && max - min >= fabs(mid)*dmnsn_epsilon); return mid; } @@ -348,7 +313,7 @@ dmnsn_solve_cubic(double poly[4], double x[3]) double q = poly[0] - poly[2]*(9.0*poly[1] - 2.0*b2)/27.0; double disc = 4.0*p*p*p + 27.0*q*q; - double bdiv3 = poly[2]/3; + double bdiv3 = poly[2]/3.0; if (disc < 0.0) { /* Three real roots -- this implies p < 0 */ @@ -392,15 +357,13 @@ dmnsn_solve_cubic(double poly[4], double x[3]) return 0; } -/* Uspensky's algorithm */ +/* Solve a polynomial */ DMNSN_HOT size_t dmnsn_polynomial_solve(const double poly[], size_t degree, double x[]) { /* Copy the polynomial so we can be destructive */ - double p[degree + 1]; - for (size_t i = 0; i <= degree; ++i) { - p[i] = poly[i]; - } + double copy[degree + 1], *p = copy; + dmnsn_polynomial_copy(p, poly, degree); /* Index into x[] */ size_t i = 0; @@ -408,23 +371,17 @@ dmnsn_polynomial_solve(const double poly[], size_t degree, double x[]) /* Account for leading zero coefficients */ degree = dmnsn_real_degree(p, degree); /* Normalize the leading coefficient to 1.0 */ - dmnsn_normalize_polynomial(p, degree); + dmnsn_polynomial_normalize(p, degree); /* Eliminate simple zero roots */ - degree = dmnsn_eliminate_zero_roots(p, degree); + dmnsn_eliminate_zero_roots(&p, °ree); static const size_t max_algebraic = 3; if (degree > max_algebraic) { /* Find isolating intervals for (degree - max_algebraic) roots of p[] */ double ranges[degree - max_algebraic][2]; - size_t n = dmnsn_uspensky_bounds(p, degree, ranges, degree - max_algebraic); - - /* Calculate a finite upper bound for the roots of p[] */ - double absmax = dmnsn_root_bound(p, degree); + size_t n = dmnsn_root_bounds(p, degree, ranges, degree - max_algebraic); for (size_t j = 0; j < n; ++j) { - /* Replace large or infinite upper bounds with a finite one */ - ranges[j][1] = dmnsn_min(ranges[j][1], absmax); - /* Bisect within the found range */ double r = dmnsn_bisect_root(p, degree, ranges[j][0], ranges[j][1]); diff --git a/libdimension/tests/polynomial.c b/libdimension/tests/polynomial.c index d66c975..b0d3b77 100644 --- a/libdimension/tests/polynomial.c +++ b/libdimension/tests/polynomial.c @@ -32,13 +32,13 @@ main(void) dmnsn_die_on_warnings(true); double poly[6], x[5]; - /* poly[] = (x + 1)*(x - 1.2345)*(x - 2.3456)*(x - 5)*(x - 100) */ - poly[5] = 1.0; - poly[4] = -107.5801; - poly[3] = 770.2260432; - poly[2] = -1215.2863928; - poly[1] = -646.270936; - poly[0] = 1447.8216; + /* poly[] = 2*(x + 1)*(x - 1.2345)*(x - 2.3456)*(x - 5)*(x - 100) */ + poly[5] = 2.0; + poly[4] = -215.1602; + poly[3] = 1540.4520864; + poly[2] = -2430.5727856; + poly[1] = -1292.541872; + poly[0] = 2895.6432; size_t n = dmnsn_polynomial_solve(poly, 5, x); if (n != 4) { @@ -52,7 +52,7 @@ main(void) double evmin = dmnsn_polynomial_evaluate(poly, 5, x[i] - dmnsn_epsilon); double ev = dmnsn_polynomial_evaluate(poly, 5, x[i]); double evmax = dmnsn_polynomial_evaluate(poly, 5, x[i] + dmnsn_epsilon); - if (fabs(evmin) < ev || fabs(evmax) < ev) { + if (fabs(evmin) < fabs(ev) || fabs(evmax) < fabs(ev)) { fprintf(stderr, "--- Root %.15g is inaccurate! ---\n", x[i]); return EXIT_FAILURE; } |