1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
// Copyright © Tavian Barnes <tavianator@tavianator.com>
// SPDX-License-Identifier: 0BSD
/**
* An asynchronous I/O queue implementation.
*
* struct ioq is composed of two separate queues:
*
* struct ioqq *pending; // Pending I/O requests
* struct ioqq *ready; // Ready I/O responses
*
* Worker threads pop requests from `pending`, execute them, and push them back
* to the `ready` queue. The main thread pushes requests to `pending` and pops
* them from `ready`.
*
* struct ioqq is a blocking MPMC queue (though it could be SPMC/MPSC for
* pending/ready respectively). It is implemented as a circular buffer:
*
* size_t mask; // (1 << N) - 1
* [padding]
* size_t head; // Writer index
* [padding]
* size_t tail; // Reader index
* [padding]
* ioq_slot slots[1 << N]; // Queue contents
*
* Pushes are implemented with an unconditional
*
* fetch_add(&ioqq->head, IOQ_STRIDE)
*
* which scales better on many architectures than compare-and-swap (see [1] for
* details). Pops are implemented similarly. We add IOQ_STRIDE rather than 1
* so that successive queue elements are on different cache lines, but the
* exposition below uses 1 for simplicity.
*
* Since the fetch-and-adds are unconditional, non-blocking readers can get
* ahead of writers:
*
* Reader Writer
* ──────────────── ──────────────────────
* head: 0 → 1
* slots[0]: empty
* tail: 0 → 1
* slots[0]: empty → full
* head: 1 → 2
* slots[1]: empty!
*
* To avoid this, non-blocking reads (ioqq_pop(ioqq, false)) must mark the slots
* somehow so that writers can skip them:
*
* Reader Writer
* ─────────────────────── ───────────────────────
* head: 0 → 1
* slots[0]: empty → skip
* tail: 0 → 1
* slots[0]: skip → empty
* tail: 1 → 2
* slots[1]: empty → full
* head: 1 → 2
* slots[1]: full → empty
*
* As well, a reader might "lap" a writer (or another reader), so slots need to
* count how many times they should be skipped:
*
* Reader Writer
* ────────────────────────── ─────────────────────────
* head: 0 → 1
* slots[0]: empty → skip(1)
* head: 1 → 2
* slots[1]: empty → skip(1)
* ...
* head: M → 0
* slots[M]: empty → skip(1)
* head: 0 → 1
* slots[0]: skip(1 → 2)
* tail: 0 → 1
* slots[0]: skip(2 → 1)
* tail: 1 → 2
* slots[1]: skip(1) → empty
* ...
* tail: M → 0
* slots[M]: skip(1) → empty
* tail: 0 → 1
* slots[0]: skip(1) → empty
* tail: 1 → 2
* slots[1]: empty → full
* head: 1 → 2
* slots[1]: full → empty
*
* As described in [1], this approach is susceptible to livelock if readers stay
* ahead of writers. This is okay for us because we don't retry failed non-
* blocking reads.
*
* The slot representation uses tag bits to hold either a pointer or skip(N):
*
* IOQ_SKIP (highest bit) IOQ_BLOCKED (lowest bit)
* ↓ ↓
* 0 0 0 ... 0 0 0
* └──────────┬──────────┘
* │
* value bits
*
* If IOQ_SKIP is unset, the value bits hold a pointer (or zero/NULL for empty).
* If IOQ_SKIP is set, the value bits hold a negative skip count. Writers can
* reduce the skip count by adding 1 to the value bits, and when the count hits
* zero, the carry will automatically clear IOQ_SKIP:
*
* IOQ_SKIP IOQ_BLOCKED
* ↓ ↓
* 1 1 1 ... 1 0 0 skip(2)
* 1 1 1 ... 1 1 0 skip(1)
* 0 0 0 ... 0 0 0 empty
*
* The IOQ_BLOCKED flag is used to track sleeping waiters, futex-style. To wait
* for a slot to change, waiters call ioq_slot_wait() which sets IOQ_BLOCKED and
* goes to sleep. Whenever a slot is updated, if the old value had IOQ_BLOCKED
* set, ioq_slot_wake() must be called to wake up that waiter.
*
* Blocking/waking uses a pool of monitors (mutex, condition variable pairs).
* Slots are assigned round-robin to a monitor from the pool.
*
* [1]: https://arxiv.org/abs/2201.02179
*/
#include "ioq.h"
#include "alloc.h"
#include "atomic.h"
#include "bfstd.h"
#include "bit.h"
#include "config.h"
#include "diag.h"
#include "dir.h"
#include "sanity.h"
#include "thread.h"
#include <assert.h>
#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#if BFS_USE_LIBURING
# include <liburing.h>
#endif
/**
* A monitor for an I/O queue slot.
*/
struct ioq_monitor {
cache_align pthread_mutex_t mutex;
pthread_cond_t cond;
};
/** Initialize an ioq_monitor. */
static int ioq_monitor_init(struct ioq_monitor *monitor) {
if (mutex_init(&monitor->mutex, NULL) != 0) {
return -1;
}
if (cond_init(&monitor->cond, NULL) != 0) {
mutex_destroy(&monitor->mutex);
return -1;
}
return 0;
}
/** Destroy an ioq_monitor. */
static void ioq_monitor_destroy(struct ioq_monitor *monitor) {
cond_destroy(&monitor->cond);
mutex_destroy(&monitor->mutex);
}
/** A single entry in a command queue. */
typedef atomic uintptr_t ioq_slot;
/** Someone might be waiting on this slot. */
#define IOQ_BLOCKED ((uintptr_t)1)
/** The next push(es) should skip this slot. */
#define IOQ_SKIP ((uintptr_t)1 << (UINTPTR_WIDTH - 1))
/** Amount to add for an additional skip. */
#define IOQ_SKIP_ONE (~IOQ_BLOCKED)
// Need room for two flag bits
bfs_static_assert(alignof(struct ioq_ent) > 2);
/**
* An MPMC queue of I/O commands.
*/
struct ioqq {
/** Circular buffer index mask. */
size_t slot_mask;
/** Monitor index mask. */
size_t monitor_mask;
/** Array of monitors used by the slots. */
struct ioq_monitor *monitors;
/** Index of next writer. */
cache_align atomic size_t head;
/** Index of next reader. */
cache_align atomic size_t tail;
/** The circular buffer itself. */
cache_align ioq_slot slots[];
};
// If we assign slots sequentially, threads will likely be operating on
// consecutive slots. If these slots are in the same cache line, that will
// result in false sharing. We can mitigate this by assigning slots with a
// stride larger than a cache line e.g. 0, 9, 18, ..., 1, 10, 19, ...
// As long as the stride is relatively prime to circular buffer length, we'll
// still use every available slot. Since the length is a power of two, that
// means the stride must be odd.
#define IOQ_STRIDE ((FALSE_SHARING_SIZE / sizeof(ioq_slot)) | 1)
bfs_static_assert(IOQ_STRIDE % 2 == 1);
/** Destroy an I/O command queue. */
static void ioqq_destroy(struct ioqq *ioqq) {
if (!ioqq) {
return;
}
for (size_t i = 0; i < ioqq->monitor_mask + 1; ++i) {
ioq_monitor_destroy(&ioqq->monitors[i]);
}
free(ioqq->monitors);
free(ioqq);
}
/** Create an I/O command queue. */
static struct ioqq *ioqq_create(size_t size) {
// Circular buffer size must be a power of two
size = bit_ceil(size);
struct ioqq *ioqq = ALLOC_FLEX(struct ioqq, slots, size);
if (!ioqq) {
return NULL;
}
ioqq->slot_mask = size - 1;
ioqq->monitor_mask = -1;
// Use a pool of monitors
size_t nmonitors = size < 64 ? size : 64;
ioqq->monitors = ALLOC_ARRAY(struct ioq_monitor, nmonitors);
if (!ioqq->monitors) {
ioqq_destroy(ioqq);
return NULL;
}
for (size_t i = 0; i < nmonitors; ++i) {
if (ioq_monitor_init(&ioqq->monitors[i]) != 0) {
ioqq_destroy(ioqq);
return NULL;
}
++ioqq->monitor_mask;
}
atomic_init(&ioqq->head, 0);
atomic_init(&ioqq->tail, 0);
for (size_t i = 0; i < size; ++i) {
atomic_init(&ioqq->slots[i], 0);
}
return ioqq;
}
/** Get the monitor associated with a slot. */
static struct ioq_monitor *ioq_slot_monitor(struct ioqq *ioqq, ioq_slot *slot) {
size_t i = slot - ioqq->slots;
return &ioqq->monitors[i & ioqq->monitor_mask];
}
/** Atomically wait for a slot to change. */
attr(noinline)
static uintptr_t ioq_slot_wait(struct ioqq *ioqq, ioq_slot *slot, uintptr_t value) {
struct ioq_monitor *monitor = ioq_slot_monitor(ioqq, slot);
mutex_lock(&monitor->mutex);
uintptr_t ret = load(slot, relaxed);
if (ret != value) {
goto done;
}
if (!(value & IOQ_BLOCKED)) {
value |= IOQ_BLOCKED;
if (!compare_exchange_strong(slot, &ret, value, relaxed, relaxed)) {
goto done;
}
}
do {
// To avoid missed wakeups, it is important that
// cond_broadcast() is not called right here
cond_wait(&monitor->cond, &monitor->mutex);
ret = load(slot, relaxed);
} while (ret == value);
done:
mutex_unlock(&monitor->mutex);
return ret;
}
/** Wake up any threads waiting on a slot. */
attr(noinline)
static void ioq_slot_wake(struct ioqq *ioqq, ioq_slot *slot) {
struct ioq_monitor *monitor = ioq_slot_monitor(ioqq, slot);
// The following implementation would clearly avoid the missed wakeup
// issue mentioned above in ioq_slot_wait():
//
// mutex_lock(&monitor->mutex);
// cond_broadcast(&monitor->cond);
// mutex_unlock(&monitor->mutex);
//
// As a minor optimization, we move the broadcast outside of the lock.
// This optimization is correct, even though it leads to a seemingly-
// useless empty critical section.
mutex_lock(&monitor->mutex);
mutex_unlock(&monitor->mutex);
cond_broadcast(&monitor->cond);
}
/** Push an entry into a slot. */
static bool ioq_slot_push(struct ioqq *ioqq, ioq_slot *slot, struct ioq_ent *ent) {
uintptr_t prev = load(slot, relaxed);
while (true) {
uintptr_t next;
if (prev & IOQ_SKIP) {
// skip(1) → empty
// skip(n) → skip(n - 1)
next = (prev - IOQ_SKIP_ONE) & ~IOQ_BLOCKED;
} else if (prev > IOQ_BLOCKED) {
// full(ptr) → wait
prev = ioq_slot_wait(ioqq, slot, prev);
continue;
} else {
// empty → full(ptr)
next = (uintptr_t)ent >> 1;
}
if (compare_exchange_weak(slot, &prev, next, release, relaxed)) {
break;
}
}
if (prev & IOQ_BLOCKED) {
ioq_slot_wake(ioqq, slot);
}
return !(prev & IOQ_SKIP);
}
/** Push an entry onto the queue. */
static void ioqq_push(struct ioqq *ioqq, struct ioq_ent *ent) {
while (true) {
size_t i = fetch_add(&ioqq->head, IOQ_STRIDE, relaxed);
ioq_slot *slot = &ioqq->slots[i & ioqq->slot_mask];
if (ioq_slot_push(ioqq, slot, ent)) {
break;
}
}
}
/** (Try to) pop an entry from a slot. */
static struct ioq_ent *ioq_slot_pop(struct ioqq *ioqq, ioq_slot *slot, bool block) {
uintptr_t prev = load(slot, relaxed);
while (true) {
// empty → skip(1)
// skip(n) → skip(n + 1)
// full(ptr) → full(ptr - 1)
uintptr_t next = prev + IOQ_SKIP_ONE;
// skip(n) → ~IOQ_BLOCKED
// full(ptr) → 0
next &= (next & IOQ_SKIP) ? ~IOQ_BLOCKED : 0;
if (block && next) {
prev = ioq_slot_wait(ioqq, slot, prev);
continue;
}
if (compare_exchange_weak(slot, &prev, next, acquire, relaxed)) {
break;
}
}
if (prev & IOQ_BLOCKED) {
ioq_slot_wake(ioqq, slot);
}
// empty → 0
// skip(n) → 0
// full(ptr) → ptr
prev &= (prev & IOQ_SKIP) ? 0 : ~IOQ_BLOCKED;
return (struct ioq_ent *)(prev << 1);
}
/** Pop an entry from the queue. */
static struct ioq_ent *ioqq_pop(struct ioqq *ioqq, bool block) {
size_t i = fetch_add(&ioqq->tail, IOQ_STRIDE, relaxed);
ioq_slot *slot = &ioqq->slots[i & ioqq->slot_mask];
return ioq_slot_pop(ioqq, slot, block);
}
/** Sentinel stop command. */
static struct ioq_ent IOQ_STOP;
/** I/O queue thread-specific data. */
struct ioq_thread {
/** The thread handle. */
pthread_t id;
/** Pointer back to the I/O queue. */
struct ioq *parent;
#if BFS_USE_LIBURING
/** io_uring instance. */
struct io_uring ring;
/** Any error that occurred initializing the ring. */
int ring_err;
#endif
};
struct ioq {
/** The depth of the queue. */
size_t depth;
/** The current size of the queue. */
size_t size;
/** Cancellation flag. */
atomic bool cancel;
/** ioq_ent arena. */
struct arena ents;
/** Pending I/O requests. */
struct ioqq *pending;
/** Ready I/O responses. */
struct ioqq *ready;
/** The number of background threads. */
size_t nthreads;
/** The background threads themselves. */
struct ioq_thread threads[];
};
/** Cancel a request if we need to. */
static bool ioq_check_cancel(struct ioq *ioq, struct ioq_ent *ent) {
if (!load(&ioq->cancel, relaxed)) {
return false;
}
// Always close(), even if we're cancelled, just like a real EINTR
if (ent->op == IOQ_CLOSE || ent->op == IOQ_CLOSEDIR) {
return false;
}
ent->result = -EINTR;
ioqq_push(ioq->ready, ent);
return true;
}
/** Dispatch a single request synchronously. */
static void ioq_dispatch_sync(struct ioq *ioq, struct ioq_ent *ent) {
switch (ent->op) {
case IOQ_CLOSE:
ent->result = try(xclose(ent->close.fd));
return;
case IOQ_OPENDIR: {
struct ioq_opendir *args = &ent->opendir;
ent->result = try(bfs_opendir(args->dir, args->dfd, args->path, args->flags));
if (ent->result >= 0) {
bfs_polldir(args->dir);
}
return;
}
case IOQ_CLOSEDIR:
ent->result = try(bfs_closedir(ent->closedir.dir));
return;
}
bfs_bug("Unknown ioq_op %d", (int)ent->op);
ent->result = -ENOSYS;
}
/** Complete a single request synchronously. */
static void ioq_complete(struct ioq *ioq, struct ioq_ent *ent) {
ioq_dispatch_sync(ioq, ent);
ioqq_push(ioq->ready, ent);
}
#if BFS_USE_LIBURING
/** io_uring worker state. */
struct ioq_ring_state {
/** The I/O queue. */
struct ioq *ioq;
/** The io_uring. */
struct io_uring *ring;
/** Number of prepped, unsubmitted SQEs. */
size_t prepped;
/** Number of submitted, unreaped SQEs. */
size_t submitted;
/** Whether to stop the loop. */
bool stop;
};
/** Pop a request for ioq_ring_prep(). */
static struct ioq_ent *ioq_ring_pop(struct ioq_ring_state *state) {
if (state->stop) {
return NULL;
}
// Block if we have nothing else to do
bool block = !state->prepped && !state->submitted;
struct ioq_ent *ret = ioqq_pop(state->ioq->pending, block);
if (ret == &IOQ_STOP) {
state->stop = true;
ret = NULL;
}
return ret;
}
/** Dispatch a single request asynchronously. */
static struct io_uring_sqe *ioq_dispatch_async(struct io_uring *ring, struct ioq_ent *ent) {
struct io_uring_sqe *sqe = NULL;
switch (ent->op) {
case IOQ_CLOSE:
sqe = io_uring_get_sqe(ring);
io_uring_prep_close(sqe, ent->close.fd);
return sqe;
case IOQ_OPENDIR: {
sqe = io_uring_get_sqe(ring);
struct ioq_opendir *args = &ent->opendir;
int flags = O_RDONLY | O_CLOEXEC | O_DIRECTORY;
io_uring_prep_openat(sqe, args->dfd, args->path, flags, 0);
return sqe;
}
case IOQ_CLOSEDIR:
#if BFS_USE_UNWRAPDIR
sqe = io_uring_get_sqe(ring);
io_uring_prep_close(sqe, bfs_unwrapdir(ent->closedir.dir));
#endif
return sqe;
}
bfs_bug("Unknown ioq_op %d", (int)ent->op);
return NULL;
}
/** Prep a single SQE. */
static void ioq_prep_sqe(struct ioq_ring_state *state, struct ioq_ent *ent) {
struct ioq *ioq = state->ioq;
if (ioq_check_cancel(ioq, ent)) {
return;
}
struct io_uring_sqe *sqe = ioq_dispatch_async(state->ring, ent);
if (sqe) {
io_uring_sqe_set_data(sqe, ent);
++state->prepped;
} else {
ioq_complete(ioq, ent);
}
}
/** Prep a batch of SQEs. */
static bool ioq_ring_prep(struct ioq_ring_state *state) {
struct io_uring *ring = state->ring;
while (io_uring_sq_space_left(ring)) {
struct ioq_ent *ent = ioq_ring_pop(state);
if (!ent) {
break;
}
ioq_prep_sqe(state, ent);
}
return state->prepped || state->submitted;
}
/** Reap a single CQE. */
static void ioq_reap_cqe(struct ioq_ring_state *state, struct io_uring_cqe *cqe) {
struct ioq *ioq = state->ioq;
struct io_uring *ring = state->ring;
struct ioq_ent *ent = io_uring_cqe_get_data(cqe);
ent->result = cqe->res;
io_uring_cqe_seen(ring, cqe);
--state->submitted;
if (ent->op == IOQ_OPENDIR && ent->result >= 0) {
int fd = ent->result;
if (ioq_check_cancel(ioq, ent)) {
xclose(fd);
return;
}
struct ioq_opendir *args = &ent->opendir;
ent->result = try(bfs_opendir(args->dir, fd, NULL, args->flags));
if (ent->result >= 0) {
// TODO: io_uring_prep_getdents()
bfs_polldir(args->dir);
}
}
ioqq_push(ioq->ready, ent);
}
/** Reap a batch of CQEs. */
static void ioq_ring_reap(struct ioq_ring_state *state) {
struct io_uring *ring = state->ring;
while (state->prepped) {
int ret = io_uring_submit_and_wait(ring, 1);
if (ret > 0) {
state->prepped -= ret;
state->submitted += ret;
}
}
while (state->submitted) {
struct io_uring_cqe *cqe;
if (io_uring_wait_cqe(ring, &cqe) < 0) {
continue;
}
ioq_reap_cqe(state, cqe);
}
}
/** io_uring worker loop. */
static void ioq_ring_work(struct ioq_thread *thread) {
struct ioq_ring_state state = {
.ioq = thread->parent,
.ring = &thread->ring,
};
while (ioq_ring_prep(&state)) {
ioq_ring_reap(&state);
}
}
#endif // BFS_USE_LIBURING
/** Synchronous syscall loop. */
static void ioq_sync_work(struct ioq_thread *thread) {
struct ioq *ioq = thread->parent;
while (true) {
struct ioq_ent *ent = ioqq_pop(ioq->pending, true);
if (ent == &IOQ_STOP) {
break;
}
if (!ioq_check_cancel(ioq, ent)) {
ioq_complete(ioq, ent);
}
}
}
/** Background thread entry point. */
static void *ioq_work(void *ptr) {
struct ioq_thread *thread = ptr;
#if BFS_USE_LIBURING
if (thread->ring_err == 0) {
ioq_ring_work(thread);
return NULL;
}
#endif
ioq_sync_work(thread);
return NULL;
}
struct ioq *ioq_create(size_t depth, size_t nthreads) {
struct ioq *ioq = ZALLOC_FLEX(struct ioq, threads, nthreads);
if (!ioq) {
goto fail;
}
ioq->depth = depth;
ARENA_INIT(&ioq->ents, struct ioq_ent);
ioq->pending = ioqq_create(depth);
if (!ioq->pending) {
goto fail;
}
ioq->ready = ioqq_create(depth);
if (!ioq->ready) {
goto fail;
}
for (size_t i = 0; i < nthreads; ++i) {
struct ioq_thread *thread = &ioq->threads[i];
thread->parent = ioq;
#if BFS_USE_LIBURING
struct ioq_thread *prev = i ? &ioq->threads[i - 1] : NULL;
if (prev && prev->ring_err) {
thread->ring_err = prev->ring_err;
} else {
// Share io-wq workers between rings
struct io_uring_params params = {0};
if (prev) {
params.flags |= IORING_SETUP_ATTACH_WQ;
params.wq_fd = prev->ring.ring_fd;
}
size_t entries = depth / nthreads;
if (entries < 16) {
entries = 16;
}
thread->ring_err = -io_uring_queue_init_params(entries, &thread->ring, ¶ms);
}
#endif
if (thread_create(&thread->id, NULL, ioq_work, thread) != 0) {
goto fail;
}
++ioq->nthreads;
}
return ioq;
int err;
fail:
err = errno;
ioq_destroy(ioq);
errno = err;
return NULL;
}
size_t ioq_capacity(const struct ioq *ioq) {
return ioq->depth - ioq->size;
}
static struct ioq_ent *ioq_request(struct ioq *ioq, enum ioq_op op, void *ptr) {
if (load(&ioq->cancel, relaxed)) {
errno = EINTR;
return NULL;
}
if (ioq->size >= ioq->depth) {
errno = EAGAIN;
return NULL;
}
struct ioq_ent *ent = arena_alloc(&ioq->ents);
if (!ent) {
return NULL;
}
ent->op = op;
ent->ptr = ptr;
++ioq->size;
return ent;
}
int ioq_close(struct ioq *ioq, int fd, void *ptr) {
struct ioq_ent *ent = ioq_request(ioq, IOQ_CLOSE, ptr);
if (!ent) {
return -1;
}
ent->close.fd = fd;
ioqq_push(ioq->pending, ent);
return 0;
}
int ioq_opendir(struct ioq *ioq, struct bfs_dir *dir, int dfd, const char *path, enum bfs_dir_flags flags, void *ptr) {
struct ioq_ent *ent = ioq_request(ioq, IOQ_OPENDIR, ptr);
if (!ent) {
return -1;
}
struct ioq_opendir *args = &ent->opendir;
args->dir = dir;
args->dfd = dfd;
args->path = path;
args->flags = flags;
ioqq_push(ioq->pending, ent);
return 0;
}
int ioq_closedir(struct ioq *ioq, struct bfs_dir *dir, void *ptr) {
struct ioq_ent *ent = ioq_request(ioq, IOQ_CLOSEDIR, ptr);
if (!ent) {
return -1;
}
ent->closedir.dir = dir;
ioqq_push(ioq->pending, ent);
return 0;
}
struct ioq_ent *ioq_pop(struct ioq *ioq, bool block) {
if (ioq->size == 0) {
return NULL;
}
return ioqq_pop(ioq->ready, block);
}
void ioq_free(struct ioq *ioq, struct ioq_ent *ent) {
bfs_assert(ioq->size > 0);
--ioq->size;
arena_free(&ioq->ents, ent);
}
void ioq_cancel(struct ioq *ioq) {
if (!exchange(&ioq->cancel, true, relaxed)) {
for (size_t i = 0; i < ioq->nthreads; ++i) {
ioqq_push(ioq->pending, &IOQ_STOP);
}
}
}
void ioq_destroy(struct ioq *ioq) {
if (!ioq) {
return;
}
ioq_cancel(ioq);
for (size_t i = 0; i < ioq->nthreads; ++i) {
struct ioq_thread *thread = &ioq->threads[i];
thread_join(thread->id, NULL);
#if BFS_USE_LIBURING
io_uring_queue_exit(&thread->ring);
#endif
}
ioqq_destroy(ioq->ready);
ioqq_destroy(ioq->pending);
arena_destroy(&ioq->ents);
free(ioq);
}
|