diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2024-05-07 15:42:46 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2024-05-07 15:42:46 -0400 |
commit | 452d6697e0f92326ab139eed4eadd9c2fd8b55ca (patch) | |
tree | 0feeb3722dcf6debb6c33c5175342bf1d70a1dba /src/opt.c | |
parent | a4299f9bc1d3e60a7e628561e8d650c2a241e1c2 (diff) | |
parent | c5cf2cf90834f2f56b2940d2a499a1a614ebfd21 (diff) | |
download | bfs-452d6697e0f92326ab139eed4eadd9c2fd8b55ca.tar.xz |
Merge branch 'main' into find2fdfind2fd
Diffstat (limited to 'src/opt.c')
-rw-r--r-- | src/opt.c | 2598 |
1 files changed, 1904 insertions, 694 deletions
@@ -1,32 +1,18 @@ -/**************************************************************************** - * bfs * - * Copyright (C) 2017-2022 Tavian Barnes <tavianator@tavianator.com> * - * * - * Permission to use, copy, modify, and/or distribute this software for any * - * purpose with or without fee is hereby granted. * - * * - * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * - * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * - * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * - * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * - * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * - * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * - * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * - ****************************************************************************/ +// Copyright © Tavian Barnes <tavianator@tavianator.com> +// SPDX-License-Identifier: 0BSD /** * The expression optimizer. Different optimization levels are supported: * * -O1: basic logical simplifications, like folding (-true -and -foo) to -foo. * - * -O2: dead code elimination and data flow analysis. struct opt_facts is used + * -O2: dead code elimination and data flow analysis. struct df_domain is used * to record data flow facts that are true at various points of evaluation. - * Specifically, struct opt_facts records the facts that must be true before an - * expression is evaluated (state->facts), and those that must be true after the - * expression is evaluated, given that it returns true (state->facts_when_true) - * or false (state->facts_when_true). Additionally, state->facts_when_impure - * records the possible data flow facts before any expressions with side effects - * are evaluated. + * Specifically, struct df_domain records the state before an expression is + * evaluated (opt->before), and after an expression returns true + * (opt->after_true) or false (opt->after_false). Additionally, opt->impure + * records the possible state before any expression with side effects is + * evaluated. * * -O3: expression re-ordering to reduce expected cost. In an expression like * (-foo -and -bar), if both -foo and -bar are pure (no side effects), they can @@ -35,40 +21,154 @@ * -bar is likely to return false. * * -O4/-Ofast: aggressive optimizations that may affect correctness in corner - * cases. The main effect is to use facts_when_impure to determine if any side- - * effects are reachable at all, and skipping the traversal if not. + * cases. The main effect is to use opt->impure to determine if any side- + * effects are reachable at all, skipping the traversal if not. */ +#include "prelude.h" #include "opt.h" +#include "bftw.h" +#include "bit.h" #include "color.h" -#include "config.h" #include "ctx.h" #include "diag.h" +#include "dir.h" #include "eval.h" +#include "exec.h" #include "expr.h" +#include "list.h" #include "pwcache.h" -#include <assert.h> #include <errno.h> #include <limits.h> #include <stdarg.h> -#include <stdbool.h> #include <stdio.h> #include <unistd.h> -static char *fake_and_arg = "-a"; -static char *fake_or_arg = "-o"; -static char *fake_not_arg = "!"; +static char *fake_and_arg = "-and"; +static char *fake_or_arg = "-or"; +static char *fake_not_arg = "-not"; + +/** + * The data flow domain for predicates. + */ +enum df_pred { + /** The bottom state (unreachable). */ + PRED_BOTTOM = 0, + /** The predicate is known to be false. */ + PRED_FALSE = 1 << false, + /** The predicate is known to be true. */ + PRED_TRUE = 1 << true, + /** The top state (unknown). */ + PRED_TOP = PRED_FALSE | PRED_TRUE, +}; + +/** Make a predicate known. */ +static void constrain_pred(enum df_pred *pred, bool value) { + *pred &= 1 << value; +} + +/** Compute the join (union) of two predicates. */ +static void pred_join(enum df_pred *dest, enum df_pred src) { + *dest |= src; +} + +/** + * Types of predicates we track. + */ +enum pred_type { + /** -readable */ + READABLE_PRED, + /** -writable */ + WRITABLE_PRED, + /** -executable */ + EXECUTABLE_PRED, + /** -acl */ + ACL_PRED, + /** -capable */ + CAPABLE_PRED, + /** -empty */ + EMPTY_PRED, + /** -hidden */ + HIDDEN_PRED, + /** -nogroup */ + NOGROUP_PRED, + /** -nouser */ + NOUSER_PRED, + /** -sparse */ + SPARSE_PRED, + /** -xattr */ + XATTR_PRED, + /** The number of pred_types. */ + PRED_TYPES, +}; + +/** Get the name of a predicate type. */ +static const char *pred_type_name(enum pred_type type) { + switch (type) { + case READABLE_PRED: + return "-readable"; + case WRITABLE_PRED: + return "-writable"; + case EXECUTABLE_PRED: + return "-executable"; + case ACL_PRED: + return "-acl"; + case CAPABLE_PRED: + return "-capable"; + case EMPTY_PRED: + return "-empty"; + case HIDDEN_PRED: + return "-hidden"; + case NOGROUP_PRED: + return "-nogroup"; + case NOUSER_PRED: + return "-nouser"; + case SPARSE_PRED: + return "-sparse"; + case XATTR_PRED: + return "-xattr"; + + case PRED_TYPES: + break; + } + + bfs_bug("Unknown predicate %d", (int)type); + return "???"; +} /** * A contrained integer range. */ -struct range { +struct df_range { /** The (inclusive) minimum value. */ long long min; /** The (inclusive) maximum value. */ long long max; }; +/** Initialize an empty range. */ +static void range_init_bottom(struct df_range *range) { + range->min = LLONG_MAX; + range->max = LLONG_MIN; +} + +/** Check if a range is empty. */ +static bool range_is_bottom(const struct df_range *range) { + return range->min > range->max; +} + +/** Initialize a full range. */ +static void range_init_top(struct df_range *range) { + // All ranges we currently track are non-negative + range->min = 0; + range->max = LLONG_MAX; +} + +/** Check for an infinite range. */ +static bool range_is_top(const struct df_range *range) { + return range->min == 0 && range->max == LLONG_MAX; +} + /** Compute the minimum of two values. */ static long long min_value(long long a, long long b) { if (a < b) { @@ -88,17 +188,17 @@ static long long max_value(long long a, long long b) { } /** Constrain the minimum of a range. */ -static void constrain_min(struct range *range, long long value) { +static void constrain_min(struct df_range *range, long long value) { range->min = max_value(range->min, value); } /** Contrain the maximum of a range. */ -static void constrain_max(struct range *range, long long value) { +static void constrain_max(struct df_range *range, long long value) { range->max = min_value(range->max, value); } /** Remove a single value from a range. */ -static void range_remove(struct range *range, long long value) { +static void range_remove(struct df_range *range, long long value) { if (range->min == value) { if (range->min == LLONG_MAX) { range->max = LLONG_MIN; @@ -117,20 +217,9 @@ static void range_remove(struct range *range, long long value) { } /** Compute the union of two ranges. */ -static void range_union(struct range *result, const struct range *lhs, const struct range *rhs) { - result->min = min_value(lhs->min, rhs->min); - result->max = max_value(lhs->max, rhs->max); -} - -/** Check if a range contains no values. */ -static bool range_is_impossible(const struct range *range) { - return range->min > range->max; -} - -/** Set a range to contain no values. */ -static void set_range_impossible(struct range *range) { - range->min = LLONG_MAX; - range->max = LLONG_MIN; +static void range_join(struct df_range *dest, const struct df_range *src) { + dest->min = min_value(dest->min, src->min); + dest->max = max_value(dest->max, src->max); } /** @@ -153,179 +242,171 @@ enum range_type { RANGE_TYPES, }; -/** - * A possibly-known value of a predicate. - */ -enum known_pred { - /** The state is impossible to reach. */ - PRED_IMPOSSIBLE = -2, - /** The value of the predicate is not known. */ - PRED_UNKNOWN = -1, - /** The predicate is known to be false. */ - PRED_FALSE = false, - /** The predicate is known to be true. */ - PRED_TRUE = true, -}; - -/** Make a predicate known. */ -static void constrain_pred(enum known_pred *pred, bool value) { - if (*pred == PRED_UNKNOWN) { - *pred = value; - } else if (*pred == !value) { - *pred = PRED_IMPOSSIBLE; - } -} - -/** Compute the union of two known predicates. */ -static enum known_pred pred_union(enum known_pred lhs, enum known_pred rhs) { - if (lhs == PRED_IMPOSSIBLE) { - return rhs; - } else if (rhs == PRED_IMPOSSIBLE) { - return lhs; - } else if (lhs == rhs) { - return lhs; - } else { - return PRED_UNKNOWN; +/** Get the name of a range type. */ +static const char *range_type_name(enum range_type type) { + switch (type) { + case DEPTH_RANGE: + return "-depth"; + case GID_RANGE: + return "-gid"; + case INUM_RANGE: + return "-inum"; + case LINKS_RANGE: + return "-links"; + case SIZE_RANGE: + return "-size"; + case UID_RANGE: + return "-uid"; + + case RANGE_TYPES: + break; } + + bfs_bug("Unknown range %d", (int)type); + return "???"; } /** - * Types of predicates we track. + * The data flow analysis domain. */ -enum pred_type { - /** -readable */ - READABLE_PRED, - /** -writable */ - WRITABLE_PRED, - /** -executable */ - EXECUTABLE_PRED, - /** -acl */ - ACL_PRED, - /** -capable */ - CAPABLE_PRED, - /** -empty */ - EMPTY_PRED, - /** -hidden */ - HIDDEN_PRED, - /** -nogroup */ - NOGROUP_PRED, - /** -nouser */ - NOUSER_PRED, - /** -sparse */ - SPARSE_PRED, - /** -xattr */ - XATTR_PRED, - /** The number of pred_types. */ - PRED_TYPES, -}; +struct df_domain { + /** The predicates we track. */ + enum df_pred preds[PRED_TYPES]; -/** - * Data flow facts about an evaluation point. - */ -struct opt_facts { /** The value ranges we track. */ - struct range ranges[RANGE_TYPES]; + struct df_range ranges[RANGE_TYPES]; - /** The predicates we track. */ - enum known_pred preds[PRED_TYPES]; - - /** Bitmask of possible file types. */ + /** Bitmask of possible -types. */ unsigned int types; - /** Bitmask of possible link target types. */ + /** Bitmask of possible -xtypes. */ unsigned int xtypes; }; -/** Initialize some data flow facts. */ -static void facts_init(struct opt_facts *facts) { - for (int i = 0; i < RANGE_TYPES; ++i) { - struct range *range = &facts->ranges[i]; - range->min = 0; // All ranges we currently track are non-negative - range->max = LLONG_MAX; - } - +/** Set a data flow value to bottom. */ +static void df_init_bottom(struct df_domain *value) { for (int i = 0; i < PRED_TYPES; ++i) { - facts->preds[i] = PRED_UNKNOWN; + value->preds[i] = PRED_BOTTOM; } - facts->types = ~0; - facts->xtypes = ~0; -} - -/** Compute the union of two fact sets. */ -static void facts_union(struct opt_facts *result, const struct opt_facts *lhs, const struct opt_facts *rhs) { for (int i = 0; i < RANGE_TYPES; ++i) { - range_union(&result->ranges[i], &lhs->ranges[i], &rhs->ranges[i]); + range_init_bottom(&value->ranges[i]); } - for (int i = 0; i < PRED_TYPES; ++i) { - result->preds[i] = pred_union(lhs->preds[i], rhs->preds[i]); - } - - result->types = lhs->types | rhs->types; - result->xtypes = lhs->xtypes | rhs->xtypes; + value->types = 0; + value->xtypes = 0; } /** Determine whether a fact set is impossible. */ -static bool facts_are_impossible(const struct opt_facts *facts) { +static bool df_is_bottom(const struct df_domain *value) { for (int i = 0; i < RANGE_TYPES; ++i) { - if (range_is_impossible(&facts->ranges[i])) { + if (range_is_bottom(&value->ranges[i])) { return true; } } for (int i = 0; i < PRED_TYPES; ++i) { - if (facts->preds[i] == PRED_IMPOSSIBLE) { + if (value->preds[i] == PRED_BOTTOM) { return true; } } - if (!facts->types || !facts->xtypes) { + if (!value->types || !value->xtypes) { return true; } return false; } -/** Set some facts to be impossible. */ -static void set_facts_impossible(struct opt_facts *facts) { +/** Initialize some data flow value. */ +static void df_init_top(struct df_domain *value) { + for (int i = 0; i < PRED_TYPES; ++i) { + value->preds[i] = PRED_TOP; + } + for (int i = 0; i < RANGE_TYPES; ++i) { - set_range_impossible(&facts->ranges[i]); + range_init_top(&value->ranges[i]); } + value->types = ~0; + value->xtypes = ~0; +} + +/** Check for the top element. */ +static bool df_is_top(const struct df_domain *value) { + for (int i = 0; i < PRED_TYPES; ++i) { + if (value->preds[i] != PRED_TOP) { + return false; + } + } + + for (int i = 0; i < RANGE_TYPES; ++i) { + if (!range_is_top(&value->ranges[i])) { + return false; + } + } + + if (value->types != ~0U) { + return false; + } + + if (value->xtypes != ~0U) { + return false; + } + + return true; +} + +/** Compute the union of two fact sets. */ +static void df_join(struct df_domain *dest, const struct df_domain *src) { for (int i = 0; i < PRED_TYPES; ++i) { - facts->preds[i] = PRED_IMPOSSIBLE; + pred_join(&dest->preds[i], src->preds[i]); } - facts->types = 0; - facts->xtypes = 0; + for (int i = 0; i < RANGE_TYPES; ++i) { + range_join(&dest->ranges[i], &src->ranges[i]); + } + + dest->types |= src->types; + dest->xtypes |= src->xtypes; } /** * Optimizer state. */ -struct opt_state { +struct bfs_opt { /** The context we're optimizing. */ - const struct bfs_ctx *ctx; - - /** Data flow facts before this expression is evaluated. */ - struct opt_facts facts; - /** Data flow facts after this expression returns true. */ - struct opt_facts facts_when_true; - /** Data flow facts after this expression returns false. */ - struct opt_facts facts_when_false; - /** Data flow facts before any side-effecting expressions are evaluated. */ - struct opt_facts *facts_when_impure; + struct bfs_ctx *ctx; + /** Optimization level (ctx->optlevel). */ + int level; + /** Recursion depth. */ + int depth; + + /** Whether to produce warnings. */ + bool warn; + /** Whether the result of this expression is ignored. */ + bool ignore_result; + + /** Data flow state before this expression is evaluated. */ + struct df_domain before; + /** Data flow state after this expression returns true. */ + struct df_domain after_true; + /** Data flow state after this expression returns false. */ + struct df_domain after_false; + /** Data flow state before any side-effecting expressions are evaluated. */ + struct df_domain *impure; }; /** Log an optimization. */ -BFS_FORMATTER(3, 4) -static bool opt_debug(const struct opt_state *state, int level, const char *format, ...) { - assert(state->ctx->optlevel >= level); +attr(printf(2, 3)) +static bool opt_debug(struct bfs_opt *opt, const char *format, ...) { + if (bfs_debug_prefix(opt->ctx, DEBUG_OPT)) { + for (int i = 0; i < opt->depth; ++i) { + cfprintf(opt->ctx->cerr, "│ "); + } - if (bfs_debug(state->ctx, DEBUG_OPT, "${cyn}-O%d${rs}: ", level)) { va_list args; va_start(args, format); - cvfprintf(state->ctx->cerr, format, args); + cvfprintf(opt->ctx->cerr, format, args); va_end(args); return true; } else { @@ -333,757 +414,1886 @@ static bool opt_debug(const struct opt_state *state, int level, const char *form } } -/** Warn about an expression. */ -BFS_FORMATTER(3, 4) -static void opt_warning(const struct opt_state *state, const struct bfs_expr *expr, const char *format, ...) { - if (bfs_expr_warning(state->ctx, expr)) { +/** Log a recursive call. */ +attr(printf(2, 3)) +static bool opt_enter(struct bfs_opt *opt, const char *format, ...) { + int depth = opt->depth; + if (depth > 0) { + --opt->depth; + } + + bool debug = opt_debug(opt, "%s", depth > 0 ? "├─╮ " : ""); + if (debug) { va_list args; va_start(args, format); - bfs_warning(state->ctx, format, args); + cvfprintf(opt->ctx->cerr, format, args); va_end(args); } + + opt->depth = depth + 1; + return debug; } -/** Extract a child expression, freeing the outer expression. */ -static struct bfs_expr *extract_child_expr(struct bfs_expr *expr, struct bfs_expr **child) { - struct bfs_expr *ret = *child; - *child = NULL; - bfs_expr_free(expr); - return ret; +/** Log a recursive return. */ +attr(printf(2, 3)) +static bool opt_leave(struct bfs_opt *opt, const char *format, ...) { + bool debug = false; + int depth = opt->depth; + + if (format) { + if (depth > 1) { + opt->depth -= 2; + } + + debug = opt_debug(opt, "%s", depth > 1 ? "├─╯ " : ""); + if (debug) { + va_list args; + va_start(args, format); + cvfprintf(opt->ctx->cerr, format, args); + va_end(args); + } + } + + opt->depth = depth - 1; + return debug; } -/** - * Negate an expression. - */ -static struct bfs_expr *negate_expr(struct bfs_expr *rhs, char **argv) { - if (rhs->eval_fn == eval_not) { - return extract_child_expr(rhs, &rhs->rhs); +/** Log a shallow visit. */ +attr(printf(2, 3)) +static bool opt_visit(struct bfs_opt *opt, const char *format, ...) { + int depth = opt->depth; + if (depth > 0) { + --opt->depth; } - struct bfs_expr *expr = bfs_expr_new(eval_not, 1, argv); - if (!expr) { - bfs_expr_free(rhs); - return NULL; + bool debug = opt_debug(opt, "%s", depth > 0 ? "├─◯ " : ""); + if (debug) { + va_list args; + va_start(args, format); + cvfprintf(opt->ctx->cerr, format, args); + va_end(args); } - if (argv == &fake_not_arg) { - expr->synthetic = true; + opt->depth = depth; + return debug; +} + +/** Log the deletion of an expression. */ +attr(printf(2, 3)) +static bool opt_delete(struct bfs_opt *opt, const char *format, ...) { + int depth = opt->depth; + + if (depth > 0) { + --opt->depth; } - expr->lhs = NULL; - expr->rhs = rhs; - return expr; + bool debug = opt_debug(opt, "%s", depth > 0 ? "├─✘ " : ""); + if (debug) { + va_list args; + va_start(args, format); + cvfprintf(opt->ctx->cerr, format, args); + va_end(args); + } + + opt->depth = depth; + return debug; } -static struct bfs_expr *optimize_not_expr(const struct opt_state *state, struct bfs_expr *expr); -static struct bfs_expr *optimize_and_expr(const struct opt_state *state, struct bfs_expr *expr); -static struct bfs_expr *optimize_or_expr(const struct opt_state *state, struct bfs_expr *expr); +typedef bool dump_fn(struct bfs_opt *opt, const char *format, ...); -/** - * Apply De Morgan's laws. - */ -static struct bfs_expr *de_morgan(const struct opt_state *state, struct bfs_expr *expr, char **argv) { - bool debug = opt_debug(state, 1, "De Morgan's laws: %pe ", expr); +/** Print a df_pred. */ +static void pred_dump(dump_fn *dump, struct bfs_opt *opt, const struct df_domain *value, enum pred_type type) { + dump(opt, "${blu}%s${rs}: ", pred_type_name(type)); - struct bfs_expr *parent = negate_expr(expr, argv); - if (!parent) { - return NULL; + FILE *file = opt->ctx->cerr->file; + switch (value->preds[type]) { + case PRED_BOTTOM: + fprintf(file, "⊥\n"); + break; + case PRED_TOP: + fprintf(file, "⊤\n"); + break; + case PRED_TRUE: + fprintf(file, "true\n"); + break; + case PRED_FALSE: + fprintf(file, "false\n"); + break; } +} - bool has_parent = true; - if (parent->eval_fn != eval_not) { - expr = parent; - has_parent = false; +/** Print a df_range. */ +static void range_dump(dump_fn *dump, struct bfs_opt *opt, const struct df_domain *value, enum range_type type) { + dump(opt, "${blu}%s${rs}: ", range_type_name(type)); + + FILE *file = opt->ctx->cerr->file; + const struct df_range *range = &value->ranges[type]; + if (range_is_bottom(range)) { + fprintf(file, "⊥\n"); + } else if (range_is_top(range)) { + fprintf(file, "⊤\n"); + } else if (range->min == range->max) { + fprintf(file, "%lld\n", range->min); + } else { + if (range->min == LLONG_MIN) { + fprintf(file, "(-∞, "); + } else { + fprintf(file, "[%lld, ", range->min); + } + if (range->max == LLONG_MAX) { + fprintf(file, "∞)\n"); + } else { + fprintf(file, "%lld]\n", range->max); + } } +} - assert(expr->eval_fn == eval_and || expr->eval_fn == eval_or); - if (expr->eval_fn == eval_and) { - expr->eval_fn = eval_or; - expr->argv = &fake_or_arg; +/** Print a set of types. */ +static void types_dump(dump_fn *dump, struct bfs_opt *opt, const char *name, unsigned int types) { + dump(opt, "${blu}%s${rs}: ", name); + + FILE *file = opt->ctx->cerr->file; + if (types == 0) { + fprintf(file, " ⊥\n"); + } else if (types == ~0U) { + fprintf(file, " ⊤\n"); + } else if (count_ones(types) < count_ones(~types)) { + fprintf(file, " 0x%X\n", types); } else { - expr->eval_fn = eval_and; - expr->argv = &fake_and_arg; + fprintf(file, "~0x%X\n", ~types); } - expr->synthetic = true; +} - expr->lhs = negate_expr(expr->lhs, argv); - expr->rhs = negate_expr(expr->rhs, argv); - if (!expr->lhs || !expr->rhs) { - bfs_expr_free(parent); - return NULL; +/** Calculate the number of lines of df_dump() output. */ +static int df_dump_lines(const struct df_domain *value) { + int lines = 0; + + for (int i = 0; i < PRED_TYPES; ++i) { + lines += value->preds[i] != PRED_TOP; } - if (debug) { - cfprintf(state->ctx->cerr, "<==> %pe\n", parent); + for (int i = 0; i < RANGE_TYPES; ++i) { + lines += !range_is_top(&value->ranges[i]); } - if (expr->lhs->eval_fn == eval_not) { - expr->lhs = optimize_not_expr(state, expr->lhs); + lines += value->types != ~0U; + lines += value->xtypes != ~0U; + + return lines; +} + +/** Get the right debugging function for a df_dump() line. */ +static dump_fn *df_dump_line(int lines, int *line) { + ++*line; + + if (lines == 1) { + return opt_visit; + } else if (*line == 1) { + return opt_enter; + } else if (*line == lines) { + return opt_leave; + } else { + return opt_debug; } - if (expr->rhs->eval_fn == eval_not) { - expr->rhs = optimize_not_expr(state, expr->rhs); +} + +/** Print a data flow value. */ +static void df_dump(struct bfs_opt *opt, const char *str, const struct df_domain *value) { + if (df_is_bottom(value)) { + opt_debug(opt, "%s: ⊥\n", str); + return; + } else if (df_is_top(value)) { + opt_debug(opt, "%s: ⊤\n", str); + return; } - if (!expr->lhs || !expr->rhs) { - bfs_expr_free(parent); - return NULL; + + if (!opt_debug(opt, "%s:\n", str)) { + return; } - if (expr->eval_fn == eval_and) { - expr = optimize_and_expr(state, expr); - } else { - expr = optimize_or_expr(state, expr); + int lines = df_dump_lines(value); + int line = 0; + + for (int i = 0; i < PRED_TYPES; ++i) { + if (value->preds[i] != PRED_TOP) { + pred_dump(df_dump_line(lines, &line), opt, value, i); + } } - if (has_parent) { - parent->rhs = expr; - } else { - parent = expr; + + for (int i = 0; i < RANGE_TYPES; ++i) { + if (!range_is_top(&value->ranges[i])) { + range_dump(df_dump_line(lines, &line), opt, value, i); + } } - if (!expr) { - bfs_expr_free(parent); + + if (value->types != ~0U) { + types_dump(df_dump_line(lines, &line), opt, "-type", value->types); + } + + if (value->xtypes != ~0U) { + types_dump(df_dump_line(lines, &line), opt, "-xtype", value->xtypes); + } +} + +/** Check if an expression is constant. */ +static bool is_const(const struct bfs_expr *expr) { + return expr->eval_fn == eval_true || expr->eval_fn == eval_false; +} + +/** Warn about an expression. */ +attr(printf(3, 4)) +static void opt_warning(const struct bfs_opt *opt, const struct bfs_expr *expr, const char *format, ...) { + if (!opt->warn) { + return; + } + + if (bfs_expr_is_parent(expr) || is_const(expr)) { + return; + } + + if (bfs_expr_warning(opt->ctx, expr)) { + va_list args; + va_start(args, format); + bfs_vwarning(opt->ctx, format, args); + va_end(args); + } +} + +/** Remove and return an expression's children. */ +static void foster_children(struct bfs_expr *expr, struct bfs_exprs *children) { + bfs_assert(bfs_expr_is_parent(expr)); + + SLIST_INIT(children); + SLIST_EXTEND(children, &expr->children); + + expr->persistent_fds = 0; + expr->ephemeral_fds = 0; + expr->pure = true; +} + +/** Return an expression's only child. */ +static struct bfs_expr *only_child(struct bfs_expr *expr) { + bfs_assert(bfs_expr_is_parent(expr)); + struct bfs_expr *child = bfs_expr_children(expr); + bfs_assert(child && !child->next); + return child; +} + +/** Foster an expression's only child. */ +static struct bfs_expr *foster_only_child(struct bfs_expr *expr) { + struct bfs_expr *child = only_child(expr); + struct bfs_exprs children; + foster_children(expr, &children); + return child; +} + +/** An expression visitor. */ +struct visitor; + +/** An expression-visiting function. */ +typedef struct bfs_expr *visit_fn(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor); + +/** An entry in a visitor lookup table. */ +struct visitor_table { + /** The evaluation function to match on. */ + bfs_eval_fn *eval_fn; + /** The visitor function. */ + visit_fn *visit; +}; + +/** Look up a visitor in a table. */ +static visit_fn *look_up_visitor(const struct bfs_expr *expr, const struct visitor_table table[]) { + for (size_t i = 0; table[i].eval_fn; ++i) { + if (expr->eval_fn == table[i].eval_fn) { + return table[i].visit; + } + } + + return NULL; +} + +struct visitor { + /** The name of this visitor. */ + const char *name; + + /** A function to call before visiting children. */ + visit_fn *enter; + /** The default visitor. */ + visit_fn *visit; + /** A function to call after visiting children. */ + visit_fn *leave; + + /** A visitor lookup table. */ + const struct visitor_table *table; +}; + +/** Recursive visitor implementation. */ +static struct bfs_expr *visit_deep(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor); + +/** Visit a negation. */ +static struct bfs_expr *visit_not(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_expr *rhs = foster_only_child(expr); + + struct bfs_opt nested = *opt; + rhs = visit_deep(&nested, rhs, visitor); + if (!rhs) { return NULL; } - if (has_parent) { - parent = optimize_not_expr(state, parent); + opt->after_true = nested.after_false; + opt->after_false = nested.after_true; + + bfs_expr_append(expr, rhs); + return expr; +} + +/** Visit a conjunction. */ +static struct bfs_expr *visit_and(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); + + // Base case (-and) == (-true) + df_init_bottom(&opt->after_false); + struct bfs_opt nested = *opt; + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (SLIST_EMPTY(&children)) { + nested.ignore_result = opt->ignore_result; + } else { + nested.ignore_result = false; + } + + child = visit_deep(&nested, child, visitor); + if (!child) { + return NULL; + } + + df_join(&opt->after_false, &nested.after_false); + nested.before = nested.after_true; + + bfs_expr_append(expr, child); } - return parent; + + opt->after_true = nested.after_true; + + return expr; } -/** Optimize an expression recursively. */ -static struct bfs_expr *optimize_expr_recursive(struct opt_state *state, struct bfs_expr *expr); +/** Visit a disjunction. */ +static struct bfs_expr *visit_or(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); -/** - * Optimize a negation. - */ -static struct bfs_expr *optimize_not_expr(const struct opt_state *state, struct bfs_expr *expr) { - assert(expr->eval_fn == eval_not); - - struct bfs_expr *rhs = expr->rhs; - - int optlevel = state->ctx->optlevel; - if (optlevel >= 1) { - if (rhs == &bfs_true) { - opt_debug(state, 1, "constant propagation: %pe <==> %pe\n", expr, &bfs_false); - bfs_expr_free(expr); - return &bfs_false; - } else if (rhs == &bfs_false) { - opt_debug(state, 1, "constant propagation: %pe <==> %pe\n", expr, &bfs_true); - bfs_expr_free(expr); - return &bfs_true; - } else if (rhs->eval_fn == eval_not) { - opt_debug(state, 1, "double negation: %pe <==> %pe\n", expr, rhs->rhs); - return extract_child_expr(expr, &rhs->rhs); - } else if (bfs_expr_never_returns(rhs)) { - opt_debug(state, 1, "reachability: %pe <==> %pe\n", expr, rhs); - return extract_child_expr(expr, &expr->rhs); - } else if ((rhs->eval_fn == eval_and || rhs->eval_fn == eval_or) - && (rhs->lhs->eval_fn == eval_not || rhs->rhs->eval_fn == eval_not)) { - return de_morgan(state, expr, expr->argv); + // Base case (-or) == (-false) + df_init_bottom(&opt->after_true); + struct bfs_opt nested = *opt; + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (SLIST_EMPTY(&children)) { + nested.ignore_result = opt->ignore_result; + } else { + nested.ignore_result = false; + } + + child = visit_deep(&nested, child, visitor); + if (!child) { + return NULL; } + + df_join(&opt->after_true, &nested.after_true); + nested.before = nested.after_false; + + bfs_expr_append(expr, child); } - expr->pure = rhs->pure; - expr->always_true = rhs->always_false; - expr->always_false = rhs->always_true; - expr->cost = rhs->cost; - expr->probability = 1.0 - rhs->probability; + opt->after_false = nested.after_false; return expr; } -/** Optimize a negation recursively. */ -static struct bfs_expr *optimize_not_expr_recursive(struct opt_state *state, struct bfs_expr *expr) { - struct opt_state rhs_state = *state; - expr->rhs = optimize_expr_recursive(&rhs_state, expr->rhs); - if (!expr->rhs) { - goto fail; +/** Visit a comma expression. */ +static struct bfs_expr *visit_comma(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); + + struct bfs_opt nested = *opt; + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (SLIST_EMPTY(&children)) { + nested.ignore_result = opt->ignore_result; + } else { + nested.ignore_result = true; + } + + child = visit_deep(&nested, child, visitor); + if (!child) { + return NULL; + } + + nested.before = nested.after_true; + df_join(&nested.before, &nested.after_false); + + bfs_expr_append(expr, child); } - state->facts_when_true = rhs_state.facts_when_false; - state->facts_when_false = rhs_state.facts_when_true; + opt->after_true = nested.after_true; + opt->after_false = nested.after_false; + + return expr; +} - return optimize_not_expr(state, expr); +/** Default enter() function. */ +static struct bfs_expr *visit_enter(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + opt_enter(opt, "%pe\n", expr); + opt->after_true = opt->before; + opt->after_false = opt->before; + return expr; +} -fail: - bfs_expr_free(expr); - return NULL; +/** Default leave() function. */ +static struct bfs_expr *visit_leave(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + opt_leave(opt, "%pe\n", expr); + return expr; } -/** Optimize a conjunction. */ -static struct bfs_expr *optimize_and_expr(const struct opt_state *state, struct bfs_expr *expr) { - assert(expr->eval_fn == eval_and); - - struct bfs_expr *lhs = expr->lhs; - struct bfs_expr *rhs = expr->rhs; - - const struct bfs_ctx *ctx = state->ctx; - int optlevel = ctx->optlevel; - if (optlevel >= 1) { - if (lhs == &bfs_true) { - opt_debug(state, 1, "conjunction elimination: %pe <==> %pe\n", expr, rhs); - return extract_child_expr(expr, &expr->rhs); - } else if (rhs == &bfs_true) { - opt_debug(state, 1, "conjunction elimination: %pe <==> %pe\n", expr, lhs); - return extract_child_expr(expr, &expr->lhs); - } else if (lhs->always_false) { - opt_debug(state, 1, "short-circuit: %pe <==> %pe\n", expr, lhs); - opt_warning(state, expr->rhs, "This expression is unreachable.\n\n"); - return extract_child_expr(expr, &expr->lhs); - } else if (lhs->always_true && rhs == &bfs_false) { - bool debug = opt_debug(state, 1, "strength reduction: %pe <==> ", expr); - struct bfs_expr *ret = extract_child_expr(expr, &expr->lhs); - ret = negate_expr(ret, &fake_not_arg); - if (debug && ret) { - cfprintf(ctx->cerr, "%pe\n", ret); +static struct bfs_expr *visit_deep(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + bool entered = false; + + visit_fn *enter = visitor->enter ? visitor->enter : visit_enter; + visit_fn *leave = visitor->leave ? visitor->leave : visit_leave; + + static const struct visitor_table table[] = { + {eval_not, visit_not}, + {eval_and, visit_and}, + {eval_or, visit_or}, + {eval_comma, visit_comma}, + {NULL, NULL}, + }; + visit_fn *recursive = look_up_visitor(expr, table); + if (recursive) { + if (!entered) { + expr = enter(opt, expr, visitor); + if (!expr) { + return NULL; + } + entered = true; + } + + expr = recursive(opt, expr, visitor); + if (!expr) { + return NULL; + } + } + + visit_fn *general = visitor->visit; + if (general) { + if (!entered) { + expr = enter(opt, expr, visitor); + if (!expr) { + return NULL; + } + entered = true; + } + + expr = general(opt, expr, visitor); + if (!expr) { + return NULL; + } + } + + visit_fn *specific = look_up_visitor(expr, visitor->table); + if (specific) { + if (!entered) { + expr = enter(opt, expr, visitor); + if (!expr) { + return NULL; } - return ret; - } else if (optlevel >= 2 && lhs->pure && rhs == &bfs_false) { - opt_debug(state, 2, "purity: %pe <==> %pe\n", expr, rhs); - opt_warning(state, expr->lhs, "The result of this expression is ignored.\n\n"); - return extract_child_expr(expr, &expr->rhs); - } else if (lhs->eval_fn == eval_not && rhs->eval_fn == eval_not) { - return de_morgan(state, expr, expr->lhs->argv); + entered = true; + } + + expr = specific(opt, expr, visitor); + if (!expr) { + return NULL; } } - expr->pure = lhs->pure && rhs->pure; - expr->always_true = lhs->always_true && rhs->always_true; - expr->always_false = lhs->always_false || rhs->always_false; - expr->cost = lhs->cost + lhs->probability*rhs->cost; - expr->probability = lhs->probability*rhs->probability; + if (entered) { + expr = leave(opt, expr, visitor); + } else { + opt_visit(opt, "%pe\n", expr); + } + + return expr; +} +/** Visit an expression recursively. */ +static struct bfs_expr *visit(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + opt_enter(opt, "%s()\n", visitor->name); + expr = visit_deep(opt, expr, visitor); + opt_leave(opt, "\n"); return expr; } -/** Optimize a conjunction recursively. */ -static struct bfs_expr *optimize_and_expr_recursive(struct opt_state *state, struct bfs_expr *expr) { - struct opt_state lhs_state = *state; - expr->lhs = optimize_expr_recursive(&lhs_state, expr->lhs); - if (!expr->lhs) { - goto fail; +/** Visit an expression non-recursively. */ +static struct bfs_expr *visit_shallow(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + visit_fn *general = visitor->visit; + if (expr && general) { + expr = general(opt, expr, visitor); } - struct opt_state rhs_state = *state; - rhs_state.facts = lhs_state.facts_when_true; - expr->rhs = optimize_expr_recursive(&rhs_state, expr->rhs); - if (!expr->rhs) { - goto fail; + if (!expr) { + return NULL; } - state->facts_when_true = rhs_state.facts_when_true; - facts_union(&state->facts_when_false, &lhs_state.facts_when_false, &rhs_state.facts_when_false); + visit_fn *specific = look_up_visitor(expr, visitor->table); + if (specific) { + expr = specific(opt, expr, visitor); + } - return optimize_and_expr(state, expr); + return expr; +} -fail: - bfs_expr_free(expr); - return NULL; +/** Annotate -{execut,read,writ}able. */ +static struct bfs_expr *annotate_access(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + expr->probability = 1.0; + if (expr->num & R_OK) { + expr->probability *= 0.99; + } + if (expr->num & W_OK) { + expr->probability *= 0.8; + } + if (expr->num & X_OK) { + expr->probability *= 0.2; + } + + return expr; } -/** Optimize a disjunction. */ -static struct bfs_expr *optimize_or_expr(const struct opt_state *state, struct bfs_expr *expr) { - assert(expr->eval_fn == eval_or); - - struct bfs_expr *lhs = expr->lhs; - struct bfs_expr *rhs = expr->rhs; - - const struct bfs_ctx *ctx = state->ctx; - int optlevel = ctx->optlevel; - if (optlevel >= 1) { - if (lhs->always_true) { - opt_debug(state, 1, "short-circuit: %pe <==> %pe\n", expr, lhs); - opt_warning(state, expr->rhs, "This expression is unreachable.\n\n"); - return extract_child_expr(expr, &expr->lhs); - } else if (lhs == &bfs_false) { - opt_debug(state, 1, "disjunctive syllogism: %pe <==> %pe\n", expr, rhs); - return extract_child_expr(expr, &expr->rhs); - } else if (rhs == &bfs_false) { - opt_debug(state, 1, "disjunctive syllogism: %pe <==> %pe\n", expr, lhs); - return extract_child_expr(expr, &expr->lhs); - } else if (lhs->always_false && rhs == &bfs_true) { - bool debug = opt_debug(state, 1, "strength reduction: %pe <==> ", expr); - struct bfs_expr *ret = extract_child_expr(expr, &expr->lhs); - ret = negate_expr(ret, &fake_not_arg); - if (debug && ret) { - cfprintf(ctx->cerr, "%pe\n", ret); - } - return ret; - } else if (optlevel >= 2 && lhs->pure && rhs == &bfs_true) { - opt_debug(state, 2, "purity: %pe <==> %pe\n", expr, rhs); - opt_warning(state, expr->lhs, "The result of this expression is ignored.\n\n"); - return extract_child_expr(expr, &expr->rhs); - } else if (lhs->eval_fn == eval_not && rhs->eval_fn == eval_not) { - return de_morgan(state, expr, expr->lhs->argv); - } +/** Annotate -empty. */ +static struct bfs_expr *annotate_empty(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (opt->level >= 4) { + // Since -empty attempts to open and read directories, it may + // have side effects such as reporting permission errors, and + // thus shouldn't be re-ordered without aggressive optimizations + expr->pure = true; + } + + return expr; +} + +/** Annotate -exec. */ +static struct bfs_expr *annotate_exec(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (expr->exec->flags & BFS_EXEC_MULTI) { + expr->always_true = true; + } else { + expr->cost = 1000000.0; + } + + return expr; +} + +/** Annotate -name/-lname/-path. */ +static struct bfs_expr *annotate_fnmatch(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (expr->literal) { + expr->probability = 0.1; + } else { + expr->probability = 0.5; + } + + return expr; +} + +/** Annotate -f?print. */ +static struct bfs_expr *annotate_fprint(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + const struct colors *colors = expr->cfile->colors; + expr->calls_stat = colors && colors_need_stat(colors); + return expr; +} + +/** Estimate probability for -x?type. */ +static void estimate_type_probability(struct bfs_expr *expr) { + unsigned int types = expr->num; + + expr->probability = 0.0; + if (types & (1 << BFS_BLK)) { + expr->probability += 0.00000721183; + } + if (types & (1 << BFS_CHR)) { + expr->probability += 0.0000499855; + } + if (types & (1 << BFS_DIR)) { + expr->probability += 0.114475; + } + if (types & (1 << BFS_DOOR)) { + expr->probability += 0.000001; + } + if (types & (1 << BFS_FIFO)) { + expr->probability += 0.00000248684; + } + if (types & (1 << BFS_REG)) { + expr->probability += 0.859772; + } + if (types & (1 << BFS_LNK)) { + expr->probability += 0.0256816; + } + if (types & (1 << BFS_SOCK)) { + expr->probability += 0.0000116881; } + if (types & (1 << BFS_WHT)) { + expr->probability += 0.000001; + } +} + +/** Annotate -type. */ +static struct bfs_expr *annotate_type(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + estimate_type_probability(expr); + return expr; +} - expr->pure = lhs->pure && rhs->pure; - expr->always_true = lhs->always_true || rhs->always_true; - expr->always_false = lhs->always_false && rhs->always_false; - expr->cost = lhs->cost + (1 - lhs->probability)*rhs->cost; - expr->probability = lhs->probability + rhs->probability - lhs->probability*rhs->probability; +/** Annotate -xtype. */ +static struct bfs_expr *annotate_xtype(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (opt->level >= 4) { + // Since -xtype dereferences symbolic links, it may have side + // effects such as reporting permission errors, and thus + // shouldn't be re-ordered without aggressive optimizations + expr->pure = true; + } + estimate_type_probability(expr); return expr; } -/** Optimize a disjunction recursively. */ -static struct bfs_expr *optimize_or_expr_recursive(struct opt_state *state, struct bfs_expr *expr) { - struct opt_state lhs_state = *state; - expr->lhs = optimize_expr_recursive(&lhs_state, expr->lhs); - if (!expr->lhs) { - goto fail; +/** Annotate a negation. */ +static struct bfs_expr *annotate_not(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_expr *rhs = only_child(expr); + expr->pure = rhs->pure; + expr->always_true = rhs->always_false; + expr->always_false = rhs->always_true; + expr->cost = rhs->cost; + expr->probability = 1.0 - rhs->probability; + return expr; +} + +/** Annotate a conjunction. */ +static struct bfs_expr *annotate_and(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + expr->pure = true; + expr->always_true = true; + expr->always_false = false; + expr->cost = 0.0; + expr->probability = 1.0; + + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + expr->pure &= child->pure; + expr->always_true &= child->always_true; + expr->always_false |= child->always_false; + expr->cost += expr->probability * child->cost; + expr->probability *= child->probability; } - struct opt_state rhs_state = *state; - rhs_state.facts = lhs_state.facts_when_false; - expr->rhs = optimize_expr_recursive(&rhs_state, expr->rhs); - if (!expr->rhs) { - goto fail; + return expr; +} + +/** Annotate a disjunction. */ +static struct bfs_expr *annotate_or(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + expr->pure = true; + expr->always_true = false; + expr->always_false = true; + expr->cost = 0.0; + + float false_prob = 1.0; + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + expr->pure &= child->pure; + expr->always_true |= child->always_true; + expr->always_false &= child->always_false; + expr->cost += false_prob * child->cost; + false_prob *= (1.0 - child->probability); } + expr->probability = 1.0 - false_prob; - facts_union(&state->facts_when_true, &lhs_state.facts_when_true, &rhs_state.facts_when_true); - state->facts_when_false = rhs_state.facts_when_false; + return expr; +} - return optimize_or_expr(state, expr); +/** Annotate a comma expression. */ +static struct bfs_expr *annotate_comma(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + expr->pure = true; + expr->cost = 0.0; -fail: - bfs_expr_free(expr); - return NULL; + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + expr->pure &= child->pure; + expr->always_true = child->always_true; + expr->always_false = child->always_false; + expr->cost += child->cost; + expr->probability = child->probability; + } + + return expr; } -/** Optimize an expression in an ignored-result context. */ -static struct bfs_expr *ignore_result(const struct opt_state *state, struct bfs_expr *expr) { - int optlevel = state->ctx->optlevel; - - if (optlevel >= 1) { - while (true) { - if (expr->eval_fn == eval_not) { - opt_debug(state, 1, "ignored result: %pe --> %pe\n", expr, expr->rhs); - opt_warning(state, expr, "The result of this expression is ignored.\n\n"); - expr = extract_child_expr(expr, &expr->rhs); - } else if (optlevel >= 2 - && (expr->eval_fn == eval_and || expr->eval_fn == eval_or || expr->eval_fn == eval_comma) - && expr->rhs->pure) { - opt_debug(state, 2, "ignored result: %pe --> %pe\n", expr, expr->lhs); - opt_warning(state, expr->rhs, "The result of this expression is ignored.\n\n"); - expr = extract_child_expr(expr, &expr->lhs); - } else { - break; - } +/** Annotate an arbitrary expression. */ +static struct bfs_expr *annotate_visit(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + /** Table of pure expressions. */ + static bfs_eval_fn *const pure[] = { + eval_access, + eval_acl, + eval_capable, + eval_depth, + eval_false, + eval_flags, + eval_fstype, + eval_gid, + eval_hidden, + eval_inum, + eval_links, + eval_lname, + eval_name, + eval_newer, + eval_nogroup, + eval_nouser, + eval_path, + eval_perm, + eval_regex, + eval_samefile, + eval_size, + eval_sparse, + eval_time, + eval_true, + eval_type, + eval_uid, + eval_used, + eval_xattr, + eval_xattrname, + }; + + expr->pure = false; + for (size_t i = 0; i < countof(pure); ++i) { + if (expr->eval_fn == pure[i]) { + expr->pure = true; + break; } + } - if (optlevel >= 2 && expr->pure && expr != &bfs_false) { - opt_debug(state, 2, "ignored result: %pe --> %pe\n", expr, &bfs_false); - opt_warning(state, expr, "The result of this expression is ignored.\n\n"); - bfs_expr_free(expr); - expr = &bfs_false; + /** Table of always-true expressions. */ + static bfs_eval_fn *const always_true[] = { + eval_fls, + eval_fprint, + eval_fprint0, + eval_fprintf, + eval_fprintx, + eval_limit, + eval_prune, + eval_true, + // Non-returning + eval_exit, + eval_quit, + }; + + expr->always_true = false; + for (size_t i = 0; i < countof(always_true); ++i) { + if (expr->eval_fn == always_true[i]) { + expr->always_true = true; + break; + } + } + + /** Table of always-false expressions. */ + static bfs_eval_fn *const always_false[] = { + eval_false, + // Non-returning + eval_exit, + eval_quit, + }; + + expr->always_false = false; + for (size_t i = 0; i < countof(always_false); ++i) { + if (expr->eval_fn == always_false[i]) { + expr->always_false = true; + break; + } + } + + /** Table of stat-calling primaries. */ + static bfs_eval_fn *const calls_stat[] = { + eval_empty, + eval_flags, + eval_fls, + eval_fprintf, + eval_fstype, + eval_gid, + eval_inum, + eval_links, + eval_newer, + eval_nogroup, + eval_nouser, + eval_perm, + eval_samefile, + eval_size, + eval_sparse, + eval_time, + eval_uid, + eval_used, + eval_xattr, + eval_xattrname, + }; + + expr->calls_stat = false; + for (size_t i = 0; i < countof(calls_stat); ++i) { + if (expr->eval_fn == calls_stat[i]) { + expr->calls_stat = true; + break; + } + } + +#define FAST_COST 40.0 +#define FNMATCH_COST 400.0 +#define STAT_COST 1000.0 +#define PRINT_COST 20000.0 + + /** Table of expression costs. */ + static const struct { + bfs_eval_fn *eval_fn; + float cost; + } costs[] = { + {eval_access, STAT_COST}, + {eval_acl, STAT_COST}, + {eval_capable, STAT_COST}, + {eval_empty, 2 * STAT_COST}, // readdir() is worse than stat() + {eval_flags, STAT_COST}, + {eval_fls, PRINT_COST}, + {eval_fprint, PRINT_COST}, + {eval_fprint0, PRINT_COST}, + {eval_fprintf, PRINT_COST}, + {eval_fprintx, PRINT_COST}, + {eval_fstype, STAT_COST}, + {eval_gid, STAT_COST}, + {eval_inum, STAT_COST}, + {eval_links, STAT_COST}, + {eval_lname, FNMATCH_COST}, + {eval_name, FNMATCH_COST}, + {eval_newer, STAT_COST}, + {eval_nogroup, STAT_COST}, + {eval_nouser, STAT_COST}, + {eval_path, FNMATCH_COST}, + {eval_perm, STAT_COST}, + {eval_samefile, STAT_COST}, + {eval_size, STAT_COST}, + {eval_sparse, STAT_COST}, + {eval_time, STAT_COST}, + {eval_uid, STAT_COST}, + {eval_used, STAT_COST}, + {eval_xattr, STAT_COST}, + {eval_xattrname, STAT_COST}, + }; + + expr->cost = FAST_COST; + for (size_t i = 0; i < countof(costs); ++i) { + if (expr->eval_fn == costs[i].eval_fn) { + expr->cost = costs[i].cost; + break; + } + } + + /** Table of expression probabilities. */ + static const struct { + /** The evaluation function with this cost. */ + bfs_eval_fn *eval_fn; + /** The matching probability. */ + float probability; + } probs[] = { + {eval_acl, 0.00002}, + {eval_capable, 0.000002}, + {eval_empty, 0.01}, + {eval_false, 0.0}, + {eval_hidden, 0.01}, + {eval_nogroup, 0.01}, + {eval_nouser, 0.01}, + {eval_samefile, 0.01}, + {eval_true, 1.0}, + {eval_xattr, 0.01}, + {eval_xattrname, 0.01}, + }; + + expr->probability = 0.5; + for (size_t i = 0; i < countof(probs); ++i) { + if (expr->eval_fn == probs[i].eval_fn) { + expr->probability = probs[i].probability; + break; } } return expr; } -/** Optimize a comma expression. */ -static struct bfs_expr *optimize_comma_expr(const struct opt_state *state, struct bfs_expr *expr) { - assert(expr->eval_fn == eval_comma); - - struct bfs_expr *lhs = expr->lhs; - struct bfs_expr *rhs = expr->rhs; - - int optlevel = state->ctx->optlevel; - if (optlevel >= 1) { - lhs = expr->lhs = ignore_result(state, lhs); - - if (bfs_expr_never_returns(lhs)) { - opt_debug(state, 1, "reachability: %pe <==> %pe\n", expr, lhs); - opt_warning(state, expr->rhs, "This expression is unreachable.\n\n"); - return extract_child_expr(expr, &expr->lhs); - } else if ((lhs->always_true && rhs == &bfs_true) - || (lhs->always_false && rhs == &bfs_false)) { - opt_debug(state, 1, "redundancy elimination: %pe <==> %pe\n", expr, lhs); - return extract_child_expr(expr, &expr->lhs); - } else if (optlevel >= 2 && lhs->pure) { - opt_debug(state, 2, "purity: %pe <==> %pe\n", expr, rhs); - opt_warning(state, expr->lhs, "The result of this expression is ignored.\n\n"); - return extract_child_expr(expr, &expr->rhs); +/** + * Annotating visitor. + */ +static const struct visitor annotate = { + .name = "annotate", + .visit = annotate_visit, + .table = (const struct visitor_table[]) { + {eval_access, annotate_access}, + {eval_empty, annotate_empty}, + {eval_exec, annotate_exec}, + {eval_fprint, annotate_fprint}, + {eval_lname, annotate_fnmatch}, + {eval_name, annotate_fnmatch}, + {eval_path, annotate_fnmatch}, + {eval_type, annotate_type}, + {eval_xtype, annotate_xtype}, + + {eval_not, annotate_not}, + {eval_and, annotate_and}, + {eval_or, annotate_or}, + {eval_comma, annotate_comma}, + + {NULL, NULL}, + }, +}; + +/** Create a constant expression. */ +static struct bfs_expr *opt_const(struct bfs_opt *opt, bool value) { + static bfs_eval_fn *const fns[] = {eval_false, eval_true}; + static char *fake_args[] = {"-false", "-true"}; + + struct bfs_expr *expr = bfs_expr_new(opt->ctx, fns[value], 1, &fake_args[value]); + return visit_shallow(opt, expr, &annotate); +} + +/** Negate an expression, keeping it canonical. */ +static struct bfs_expr *negate_expr(struct bfs_opt *opt, struct bfs_expr *expr, char **argv) { + if (expr->eval_fn == eval_not) { + return only_child(expr); + } else if (expr->eval_fn == eval_true) { + return opt_const(opt, false); + } else if (expr->eval_fn == eval_false) { + return opt_const(opt, true); + } + + struct bfs_expr *ret = bfs_expr_new(opt->ctx, eval_not, 1, argv); + if (!ret) { + return NULL; + } + + bfs_expr_append(ret, expr); + return visit_shallow(opt, ret, &annotate); +} + +/** Sink negations into a conjunction/disjunction using De Morgan's laws. */ +static struct bfs_expr *sink_not_andor(struct bfs_opt *opt, struct bfs_expr *expr) { + opt_debug(opt, "De Morgan's laws\n"); + + char **argv = expr->argv; + expr = only_child(expr); + opt_enter(opt, "%pe\n", expr); + + if (expr->eval_fn == eval_and) { + expr->eval_fn = eval_or; + expr->argv = &fake_or_arg; + } else { + bfs_assert(expr->eval_fn == eval_or); + expr->eval_fn = eval_and; + expr->argv = &fake_and_arg; + } + + struct bfs_exprs children; + foster_children(expr, &children); + + struct bfs_expr *child; + while ((child = SLIST_POP(&children))) { + opt_enter(opt, "%pe\n", child); + + child = negate_expr(opt, child, argv); + if (!child) { + return NULL; } + + opt_leave(opt, "%pe\n", child); + bfs_expr_append(expr, child); } - expr->pure = lhs->pure && rhs->pure; - expr->always_true = bfs_expr_never_returns(lhs) || rhs->always_true; - expr->always_false = bfs_expr_never_returns(lhs) || rhs->always_false; - expr->cost = lhs->cost + rhs->cost; - expr->probability = rhs->probability; + opt_leave(opt, "%pe\n", expr); + return visit_shallow(opt, expr, &annotate); +} + +/** Sink a negation into a comma expression. */ +static struct bfs_expr *sink_not_comma(struct bfs_opt *opt, struct bfs_expr *expr) { + bfs_assert(expr->eval_fn == eval_comma); - return expr; + opt_enter(opt, "%pe\n", expr); + + char **argv = expr->argv; + expr = only_child(expr); + + struct bfs_exprs children; + foster_children(expr, &children); + + struct bfs_expr *child; + while ((child = SLIST_POP(&children))) { + if (SLIST_EMPTY(&children)) { + opt_enter(opt, "%pe\n", child); + opt_debug(opt, "sink\n"); + + child = negate_expr(opt, child, argv); + if (!child) { + return NULL; + } + + opt_leave(opt, "%pe\n", child); + } else { + opt_visit(opt, "%pe\n", child); + } + + bfs_expr_append(expr, child); + } + + opt_leave(opt, "%pe\n", expr); + return visit_shallow(opt, expr, &annotate); } -/** Optimize a comma expression recursively. */ -static struct bfs_expr *optimize_comma_expr_recursive(struct opt_state *state, struct bfs_expr *expr) { - struct opt_state lhs_state = *state; - expr->lhs = optimize_expr_recursive(&lhs_state, expr->lhs); - if (!expr->lhs) { - goto fail; +/** Canonicalize a negation. */ +static struct bfs_expr *canonicalize_not(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_expr *rhs = only_child(expr); + + if (rhs->eval_fn == eval_not) { + opt_debug(opt, "double negation\n"); + rhs = only_child(expr); + return only_child(rhs); + } else if (rhs->eval_fn == eval_and || rhs->eval_fn == eval_or) { + return sink_not_andor(opt, expr); + } else if (rhs->eval_fn == eval_comma) { + return sink_not_comma(opt, expr); + } else if (is_const(rhs)) { + opt_debug(opt, "constant propagation\n"); + return opt_const(opt, rhs->eval_fn == eval_false); + } else { + return expr; } +} - struct opt_state rhs_state = *state; - facts_union(&rhs_state.facts, &lhs_state.facts_when_true, &lhs_state.facts_when_false); - expr->rhs = optimize_expr_recursive(&rhs_state, expr->rhs); - if (!expr->rhs) { - goto fail; +/** Canonicalize an associative operator. */ +static struct bfs_expr *canonicalize_assoc(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); + + struct bfs_exprs flat; + SLIST_INIT(&flat); + + struct bfs_expr *child; + while ((child = SLIST_POP(&children))) { + if (child->eval_fn == expr->eval_fn) { + struct bfs_expr *head = SLIST_HEAD(&child->children); + struct bfs_expr *tail = SLIST_TAIL(&child->children); + + if (!head) { + opt_delete(opt, "%pe [empty]\n", child); + } else { + opt_enter(opt, "%pe\n", child); + opt_debug(opt, "associativity\n"); + if (head == tail) { + opt_leave(opt, "%pe\n", head); + } else if (head->next == tail) { + opt_leave(opt, "%pe %pe\n", head, tail); + } else { + opt_leave(opt, "%pe ... %pe\n", head, tail); + } + } + + SLIST_EXTEND(&flat, &child->children); + } else { + opt_visit(opt, "%pe\n", child); + SLIST_APPEND(&flat, child); + } } - return optimize_comma_expr(state, expr); + bfs_expr_extend(expr, &flat); -fail: - bfs_expr_free(expr); - return NULL; + return visit_shallow(opt, expr, &annotate); } -/** Infer data flow facts about a predicate. */ -static void infer_pred_facts(struct opt_state *state, enum pred_type pred) { - constrain_pred(&state->facts_when_true.preds[pred], true); - constrain_pred(&state->facts_when_false.preds[pred], false); +/** + * Canonicalizing visitor. + */ +static const struct visitor canonicalize = { + .name = "canonicalize", + .table = (const struct visitor_table[]) { + {eval_not, canonicalize_not}, + {eval_and, canonicalize_assoc}, + {eval_or, canonicalize_assoc}, + {eval_comma, canonicalize_assoc}, + {NULL, NULL}, + }, +}; + +/** Calculate the cost of an ordered pair of expressions. */ +static float expr_cost(const struct bfs_expr *parent, const struct bfs_expr *lhs, const struct bfs_expr *rhs) { + // https://cs.stackexchange.com/a/66921/21004 + float prob = lhs->probability; + if (parent->eval_fn == eval_or) { + prob = 1.0 - prob; + } + return lhs->cost + prob * rhs->cost; } -/** Infer data flow facts about an -{execut,read,writ}able expression. */ -static void infer_access_facts(struct opt_state *state, const struct bfs_expr *expr) { - if (expr->num & R_OK) { - infer_pred_facts(state, READABLE_PRED); +/** Sort a block of expressions. */ +static void sort_exprs(struct bfs_opt *opt, struct bfs_expr *parent, struct bfs_exprs *exprs) { + if (!exprs->head || !exprs->head->next) { + return; } - if (expr->num & W_OK) { - infer_pred_facts(state, WRITABLE_PRED); + + struct bfs_exprs left, right; + SLIST_INIT(&left); + SLIST_INIT(&right); + + // Split + for (struct bfs_expr *hare = exprs->head; hare && (hare = hare->next); hare = hare->next) { + struct bfs_expr *tortoise = SLIST_POP(exprs); + SLIST_APPEND(&left, tortoise); } - if (expr->num & X_OK) { - infer_pred_facts(state, EXECUTABLE_PRED); + SLIST_EXTEND(&right, exprs); + + // Recurse + sort_exprs(opt, parent, &left); + sort_exprs(opt, parent, &right); + + // Merge + while (!SLIST_EMPTY(&left) && !SLIST_EMPTY(&right)) { + struct bfs_expr *lhs = left.head; + struct bfs_expr *rhs = right.head; + + float cost = expr_cost(parent, lhs, rhs); + float swapped = expr_cost(parent, rhs, lhs); + + if (cost <= swapped) { + SLIST_POP(&left); + SLIST_APPEND(exprs, lhs); + } else { + opt_enter(opt, "%pe %pe [${ylw}%g${rs}]\n", lhs, rhs, cost); + SLIST_POP(&right); + SLIST_APPEND(exprs, rhs); + opt_leave(opt, "%pe %pe [${ylw}%g${rs}]\n", rhs, lhs, swapped); + } } + SLIST_EXTEND(exprs, &left); + SLIST_EXTEND(exprs, &right); +} + +/** Reorder children to reduce cost. */ +static struct bfs_expr *reorder_andor(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); + + // Split into blocks of consecutive pure/impure expressions, and sort + // the pure blocks + struct bfs_exprs pure; + SLIST_INIT(&pure); + + struct bfs_expr *child; + while ((child = SLIST_POP(&children))) { + if (child->pure) { + SLIST_APPEND(&pure, child); + } else { + sort_exprs(opt, expr, &pure); + bfs_expr_extend(expr, &pure); + bfs_expr_append(expr, child); + } + } + sort_exprs(opt, expr, &pure); + bfs_expr_extend(expr, &pure); + + return visit_shallow(opt, expr, &annotate); } -/** Infer data flow facts about an icmp-style ([+-]N) expression. */ -static void infer_icmp_facts(struct opt_state *state, const struct bfs_expr *expr, enum range_type type) { - struct range *range_when_true = &state->facts_when_true.ranges[type]; - struct range *range_when_false = &state->facts_when_false.ranges[type]; +/** + * Reordering visitor. + */ +static const struct visitor reorder = { + .name = "reorder", + .table = (const struct visitor_table[]) { + {eval_and, reorder_andor}, + {eval_or, reorder_andor}, + {NULL, NULL}, + }, +}; + +/** Transfer function for simple predicates. */ +static void data_flow_pred(struct bfs_opt *opt, enum pred_type pred, bool value) { + constrain_pred(&opt->after_true.preds[pred], value); + constrain_pred(&opt->after_false.preds[pred], !value); +} + +/** Transfer function for icmp-style ([+-]N) expressions. */ +static void data_flow_icmp(struct bfs_opt *opt, const struct bfs_expr *expr, enum range_type type) { + struct df_range *true_range = &opt->after_true.ranges[type]; + struct df_range *false_range = &opt->after_false.ranges[type]; long long value = expr->num; switch (expr->int_cmp) { case BFS_INT_EQUAL: - constrain_min(range_when_true, value); - constrain_max(range_when_true, value); - range_remove(range_when_false, value); + constrain_min(true_range, value); + constrain_max(true_range, value); + range_remove(false_range, value); break; case BFS_INT_LESS: - constrain_min(range_when_false, value); - constrain_max(range_when_true, value); - range_remove(range_when_true, value); + constrain_min(false_range, value); + constrain_max(true_range, value); + range_remove(true_range, value); break; case BFS_INT_GREATER: - constrain_max(range_when_false, value); - constrain_min(range_when_true, value); - range_remove(range_when_true, value); + constrain_max(false_range, value); + constrain_min(true_range, value); + range_remove(true_range, value); break; } } -/** Infer data flow facts about a -gid expression. */ -static void infer_gid_facts(struct opt_state *state, const struct bfs_expr *expr) { - infer_icmp_facts(state, expr, GID_RANGE); +/** Transfer function for -{execut,read,writ}able. */ +static struct bfs_expr *data_flow_access(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (expr->num & R_OK) { + data_flow_pred(opt, READABLE_PRED, true); + } + if (expr->num & W_OK) { + data_flow_pred(opt, WRITABLE_PRED, true); + } + if (expr->num & X_OK) { + data_flow_pred(opt, EXECUTABLE_PRED, true); + } + + return expr; +} - struct range *range = &state->facts_when_true.ranges[GID_RANGE]; +/** Transfer function for -gid. */ +static struct bfs_expr *data_flow_gid(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *range = &opt->after_true.ranges[GID_RANGE]; if (range->min == range->max) { gid_t gid = range->min; - bool nogroup = !bfs_getgrgid(state->ctx->groups, gid); + bool nogroup = !bfs_getgrgid(opt->ctx->groups, gid); if (errno == 0) { - constrain_pred(&state->facts_when_true.preds[NOGROUP_PRED], nogroup); + data_flow_pred(opt, NOGROUP_PRED, nogroup); } } + + return expr; +} + +/** Transfer function for -inum. */ +static struct bfs_expr *data_flow_inum(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *range = &opt->after_true.ranges[INUM_RANGE]; + if (range->min == range->max) { + expr->probability = 0.01; + } else { + expr->probability = 0.5; + } + + return expr; } -/** Infer data flow facts about a -uid expression. */ -static void infer_uid_facts(struct opt_state *state, const struct bfs_expr *expr) { - infer_icmp_facts(state, expr, UID_RANGE); +/** Transfer function for -links. */ +static struct bfs_expr *data_flow_links(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *range = &opt->after_true.ranges[LINKS_RANGE]; + if (1 >= range->min && 1 <= range->max) { + expr->probability = 0.99; + } else { + expr->probability = 0.5; + } - struct range *range = &state->facts_when_true.ranges[UID_RANGE]; + return expr; +} + +/** Transfer function for -samefile. */ +static struct bfs_expr *data_flow_samefile(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *true_range = &opt->after_true.ranges[INUM_RANGE]; + constrain_min(true_range, expr->ino); + constrain_max(true_range, expr->ino); + + struct df_range *false_range = &opt->after_false.ranges[INUM_RANGE]; + range_remove(false_range, expr->ino); + + return expr; +} + +/** Transfer function for -size. */ +static struct bfs_expr *data_flow_size(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *range = &opt->after_true.ranges[SIZE_RANGE]; + if (range->min == range->max) { + expr->probability = 0.01; + } else { + expr->probability = 0.5; + } + + return expr; +} + +/** Transfer function for -type. */ +static struct bfs_expr *data_flow_type(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + opt->after_true.types &= expr->num; + opt->after_false.types &= ~expr->num; + return expr; +} + +/** Transfer function for -uid. */ +static struct bfs_expr *data_flow_uid(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct df_range *range = &opt->after_true.ranges[UID_RANGE]; if (range->min == range->max) { uid_t uid = range->min; - bool nouser = !bfs_getpwuid(state->ctx->users, uid); + bool nouser = !bfs_getpwuid(opt->ctx->users, uid); if (errno == 0) { - constrain_pred(&state->facts_when_true.preds[NOUSER_PRED], nouser); + data_flow_pred(opt, NOUSER_PRED, nouser); } } + + return expr; } -/** Infer data flow facts about a -samefile expression. */ -static void infer_samefile_facts(struct opt_state *state, const struct bfs_expr *expr) { - struct range *range_when_true = &state->facts_when_true.ranges[INUM_RANGE]; - constrain_min(range_when_true, expr->ino); - constrain_max(range_when_true, expr->ino); -} - -/** Infer data flow facts about a -type expression. */ -static void infer_type_facts(struct opt_state *state, const struct bfs_expr *expr) { - state->facts_when_true.types &= expr->num; - state->facts_when_false.types &= ~expr->num; -} - -/** Infer data flow facts about an -xtype expression. */ -static void infer_xtype_facts(struct opt_state *state, const struct bfs_expr *expr) { - state->facts_when_true.xtypes &= expr->num; - state->facts_when_false.xtypes &= ~expr->num; -} - -static struct bfs_expr *optimize_expr_recursive(struct opt_state *state, struct bfs_expr *expr) { - int optlevel = state->ctx->optlevel; - - state->facts_when_true = state->facts; - state->facts_when_false = state->facts; - - if (optlevel >= 2 && facts_are_impossible(&state->facts)) { - opt_debug(state, 2, "reachability: %pe --> %pe\n", expr, &bfs_false); - opt_warning(state, expr, "This expression is unreachable.\n\n"); - bfs_expr_free(expr); - expr = &bfs_false; - goto done; - } - - if (!bfs_expr_has_children(expr) && !expr->pure) { - facts_union(state->facts_when_impure, state->facts_when_impure, &state->facts); - } - - if (expr->eval_fn == eval_access) { - infer_access_facts(state, expr); - } else if (expr->eval_fn == eval_acl) { - infer_pred_facts(state, ACL_PRED); - } else if (expr->eval_fn == eval_capable) { - infer_pred_facts(state, CAPABLE_PRED); - } else if (expr->eval_fn == eval_depth) { - infer_icmp_facts(state, expr, DEPTH_RANGE); - } else if (expr->eval_fn == eval_empty) { - infer_pred_facts(state, EMPTY_PRED); - } else if (expr->eval_fn == eval_gid) { - infer_gid_facts(state, expr); - } else if (expr->eval_fn == eval_hidden) { - infer_pred_facts(state, HIDDEN_PRED); - } else if (expr->eval_fn == eval_inum) { - infer_icmp_facts(state, expr, INUM_RANGE); - } else if (expr->eval_fn == eval_links) { - infer_icmp_facts(state, expr, LINKS_RANGE); - } else if (expr->eval_fn == eval_nogroup) { - infer_pred_facts(state, NOGROUP_PRED); - } else if (expr->eval_fn == eval_nouser) { - infer_pred_facts(state, NOUSER_PRED); - } else if (expr->eval_fn == eval_samefile) { - infer_samefile_facts(state, expr); - } else if (expr->eval_fn == eval_size) { - infer_icmp_facts(state, expr, SIZE_RANGE); - } else if (expr->eval_fn == eval_sparse) { - infer_pred_facts(state, SPARSE_PRED); - } else if (expr->eval_fn == eval_type) { - infer_type_facts(state, expr); - } else if (expr->eval_fn == eval_uid) { - infer_uid_facts(state, expr); - } else if (expr->eval_fn == eval_xattr) { - infer_pred_facts(state, XATTR_PRED); - } else if (expr->eval_fn == eval_xtype) { - infer_xtype_facts(state, expr); - } else if (expr->eval_fn == eval_not) { - expr = optimize_not_expr_recursive(state, expr); - } else if (expr->eval_fn == eval_and) { - expr = optimize_and_expr_recursive(state, expr); - } else if (expr->eval_fn == eval_or) { - expr = optimize_or_expr_recursive(state, expr); - } else if (expr->eval_fn == eval_comma) { - expr = optimize_comma_expr_recursive(state, expr); - } +/** Transfer function for -xtype. */ +static struct bfs_expr *data_flow_xtype(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + opt->after_true.xtypes &= expr->num; + opt->after_false.xtypes &= ~expr->num; + return expr; +} - if (!expr) { - goto done; - } +/** Data flow visitor entry. */ +static struct bfs_expr *data_flow_enter(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + visit_enter(opt, expr, visitor); - if (bfs_expr_has_children(expr)) { - struct bfs_expr *lhs = expr->lhs; - struct bfs_expr *rhs = expr->rhs; - if (rhs) { - expr->persistent_fds = rhs->persistent_fds; - expr->ephemeral_fds = rhs->ephemeral_fds; - } - if (lhs) { - expr->persistent_fds += lhs->persistent_fds; - if (lhs->ephemeral_fds > expr->ephemeral_fds) { - expr->ephemeral_fds = lhs->ephemeral_fds; - } - } + df_dump(opt, "before", &opt->before); + + if (!bfs_expr_is_parent(expr) && !expr->pure) { + df_join(opt->impure, &opt->before); + df_dump(opt, "impure", opt->impure); } + return expr; +} + +/** Data flow visitor exit. */ +static struct bfs_expr *data_flow_leave(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { if (expr->always_true) { - set_facts_impossible(&state->facts_when_false); + expr->probability = 1.0; + df_init_bottom(&opt->after_false); } + if (expr->always_false) { - set_facts_impossible(&state->facts_when_true); + expr->probability = 0.0; + df_init_bottom(&opt->after_true); } - if (optlevel < 2 || expr == &bfs_true || expr == &bfs_false) { - goto done; + df_dump(opt, "after true", &opt->after_true); + df_dump(opt, "after false", &opt->after_false); + + if (df_is_bottom(&opt->after_false)) { + if (!expr->pure) { + expr->always_true = true; + expr->probability = 0.0; + } else if (expr->eval_fn != eval_true) { + opt_warning(opt, expr, "This expression is always true.\n\n"); + opt_debug(opt, "pure, always true\n"); + expr = opt_const(opt, true); + if (!expr) { + return NULL; + } + } } - if (facts_are_impossible(&state->facts_when_true)) { - if (expr->pure) { - opt_debug(state, 2, "data flow: %pe --> %pe\n", expr, &bfs_false); - opt_warning(state, expr, "This expression is always false.\n\n"); - bfs_expr_free(expr); - expr = &bfs_false; - } else { + if (df_is_bottom(&opt->after_true)) { + if (!expr->pure) { expr->always_false = true; expr->probability = 0.0; - } - } else if (facts_are_impossible(&state->facts_when_false)) { - if (expr->pure) { - opt_debug(state, 2, "data flow: %pe --> %pe\n", expr, &bfs_true); - opt_warning(state, expr, "This expression is always true.\n\n"); - bfs_expr_free(expr); - expr = &bfs_true; - } else { - expr->always_true = true; - expr->probability = 1.0; + } else if (expr->eval_fn != eval_false) { + opt_warning(opt, expr, "This expression is always false.\n\n"); + opt_debug(opt, "pure, always false\n"); + expr = opt_const(opt, false); + if (!expr) { + return NULL; + } } } -done: - return expr; + return visit_leave(opt, expr, visitor); } -/** Swap the children of a binary expression if it would reduce the cost. */ -static bool reorder_expr(const struct opt_state *state, struct bfs_expr *expr, float swapped_cost) { - if (swapped_cost < expr->cost) { - bool debug = opt_debug(state, 3, "cost: %pe <==> ", expr); - struct bfs_expr *lhs = expr->lhs; - expr->lhs = expr->rhs; - expr->rhs = lhs; - if (debug) { - cfprintf(state->ctx->cerr, "%pe (~${ylw}%g${rs} --> ~${ylw}%g${rs})\n", expr, expr->cost, swapped_cost); +/** Data flow visitor function. */ +static struct bfs_expr *data_flow_visit(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (opt->ignore_result && expr->pure) { + opt_debug(opt, "ignored result\n"); + opt_warning(opt, expr, "The result of this expression is ignored.\n\n"); + expr = opt_const(opt, false); + if (!expr) { + return NULL; } - expr->cost = swapped_cost; - return true; - } else { - return false; } + + if (df_is_bottom(&opt->before)) { + opt_debug(opt, "unreachable\n"); + opt_warning(opt, expr, "This expression is unreachable.\n\n"); + expr = opt_const(opt, false); + if (!expr) { + return NULL; + } + } + + /** Table of simple predicates. */ + static const struct { + bfs_eval_fn *eval_fn; + enum pred_type pred; + } preds[] = { + {eval_acl, ACL_PRED}, + {eval_capable, CAPABLE_PRED}, + {eval_empty, EMPTY_PRED}, + {eval_hidden, HIDDEN_PRED}, + {eval_nogroup, NOGROUP_PRED}, + {eval_nouser, NOUSER_PRED}, + {eval_sparse, SPARSE_PRED}, + {eval_xattr, XATTR_PRED}, + }; + + for (size_t i = 0; i < countof(preds); ++i) { + if (preds[i].eval_fn == expr->eval_fn) { + data_flow_pred(opt, preds[i].pred, true); + break; + } + } + + /** Table of simple range comparisons. */ + static const struct { + bfs_eval_fn *eval_fn; + enum range_type range; + } ranges[] = { + {eval_depth, DEPTH_RANGE}, + {eval_gid, GID_RANGE}, + {eval_inum, INUM_RANGE}, + {eval_links, LINKS_RANGE}, + {eval_size, SIZE_RANGE}, + {eval_uid, UID_RANGE}, + }; + + for (size_t i = 0; i < countof(ranges); ++i) { + if (ranges[i].eval_fn == expr->eval_fn) { + data_flow_icmp(opt, expr, ranges[i].range); + break; + } + } + + return expr; } /** - * Recursively reorder sub-expressions to reduce the overall cost. - * - * @param expr - * The expression to optimize. - * @return - * Whether any subexpression was reordered. + * Data flow visitor. */ -static bool reorder_expr_recursive(const struct opt_state *state, struct bfs_expr *expr) { - if (!bfs_expr_has_children(expr)) { - return false; +static const struct visitor data_flow = { + .name = "data_flow", + .enter = data_flow_enter, + .visit = data_flow_visit, + .leave = data_flow_leave, + .table = (const struct visitor_table[]) { + {eval_access, data_flow_access}, + {eval_gid, data_flow_gid}, + {eval_inum, data_flow_inum}, + {eval_links, data_flow_links}, + {eval_samefile, data_flow_samefile}, + {eval_size, data_flow_size}, + {eval_type, data_flow_type}, + {eval_uid, data_flow_uid}, + {eval_xtype, data_flow_xtype}, + {NULL, NULL}, + }, +}; + +/** Simplify a negation. */ +static struct bfs_expr *simplify_not(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + if (opt->ignore_result) { + opt_debug(opt, "ignored result\n"); + expr = only_child(expr); + } + + return expr; +} + +/** Lift negations out of a conjunction/disjunction using De Morgan's laws. */ +static struct bfs_expr *lift_andor_not(struct bfs_opt *opt, struct bfs_expr *expr) { + // Only lift negations if it would reduce the number of (-not) expressions + size_t added = 0, removed = 0; + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + if (child->eval_fn == eval_not) { + ++removed; + } else { + ++added; + } + } + if (added >= removed) { + return visit_shallow(opt, expr, &annotate); + } + + opt_debug(opt, "De Morgan's laws\n"); + + if (expr->eval_fn == eval_and) { + expr->eval_fn = eval_or; + expr->argv = &fake_or_arg; + } else { + bfs_assert(expr->eval_fn == eval_or); + expr->eval_fn = eval_and; + expr->argv = &fake_and_arg; } - struct bfs_expr *lhs = expr->lhs; - struct bfs_expr *rhs = expr->rhs; + struct bfs_exprs children; + foster_children(expr, &children); - bool ret = false; - if (lhs) { - ret |= reorder_expr_recursive(state, lhs); + struct bfs_expr *child; + while ((child = SLIST_POP(&children))) { + opt_enter(opt, "%pe\n", child); + + child = negate_expr(opt, child, &fake_not_arg); + if (!child) { + return NULL; + } + + opt_leave(opt, "%pe\n", child); + bfs_expr_append(expr, child); } - if (rhs) { - ret |= reorder_expr_recursive(state, rhs); + + expr = visit_shallow(opt, expr, &annotate); + return negate_expr(opt, expr, &fake_not_arg); +} + +/** Get the first ignorable expression in a conjunction/disjunction. */ +static struct bfs_expr *first_ignorable(struct bfs_opt *opt, struct bfs_expr *expr) { + if (opt->level < 2 || !opt->ignore_result) { + return NULL; } - if (expr->eval_fn == eval_and || expr->eval_fn == eval_or) { - if (lhs->pure && rhs->pure) { - float rhs_prob = expr->eval_fn == eval_and ? rhs->probability : 1.0 - rhs->probability; - float swapped_cost = rhs->cost + rhs_prob*lhs->cost; - ret |= reorder_expr(state, expr, swapped_cost); + struct bfs_expr *ret = NULL; + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + if (!child->pure) { + ret = NULL; + } else if (!ret) { + ret = child; } } return ret; } +/** Simplify a conjunction. */ +static struct bfs_expr *simplify_and(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_expr *ignorable = first_ignorable(opt, expr); + bool ignore = false; + + struct bfs_exprs children; + foster_children(expr, &children); + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (child == ignorable) { + ignore = true; + } + + if (ignore) { + opt_delete(opt, "%pe [ignored result]\n", child); + opt_warning(opt, child, "The result of this expression is ignored.\n\n"); + continue; + } + + if (child->eval_fn == eval_true) { + opt_delete(opt, "%pe [conjunction elimination]\n", child); + continue; + } + + opt_visit(opt, "%pe\n", child); + bfs_expr_append(expr, child); + + if (child->always_false) { + while ((child = SLIST_POP(&children))) { + opt_delete(opt, "%pe [short-circuit]\n", child); + } + } + } + + struct bfs_expr *child = bfs_expr_children(expr); + if (!child) { + opt_debug(opt, "nullary identity\n"); + return opt_const(opt, true); + } else if (!child->next) { + opt_debug(opt, "unary identity\n"); + return only_child(expr); + } + + return lift_andor_not(opt, expr); +} + +/** Simplify a disjunction. */ +static struct bfs_expr *simplify_or(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_expr *ignorable = first_ignorable(opt, expr); + bool ignore = false; + + struct bfs_exprs children; + foster_children(expr, &children); + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (child == ignorable) { + ignore = true; + } + + if (ignore) { + opt_delete(opt, "%pe [ignored result]\n", child); + opt_warning(opt, child, "The result of this expression is ignored.\n\n"); + continue; + } + + if (child->eval_fn == eval_false) { + opt_delete(opt, "%pe [disjunctive syllogism]\n", child); + continue; + } + + opt_visit(opt, "%pe\n", child); + bfs_expr_append(expr, child); + + if (child->always_true) { + while ((child = SLIST_POP(&children))) { + opt_delete(opt, "%pe [short-circuit]\n", child); + } + } + } + + struct bfs_expr *child = bfs_expr_children(expr); + if (!child) { + opt_debug(opt, "nullary identity\n"); + return opt_const(opt, false); + } else if (!child->next) { + opt_debug(opt, "unary identity\n"); + return only_child(expr); + } + + return lift_andor_not(opt, expr); +} + +/** Simplify a comma expression. */ +static struct bfs_expr *simplify_comma(struct bfs_opt *opt, struct bfs_expr *expr, const struct visitor *visitor) { + struct bfs_exprs children; + foster_children(expr, &children); + + while (!SLIST_EMPTY(&children)) { + struct bfs_expr *child = SLIST_POP(&children); + + if (opt->level >= 2 && child->pure && !SLIST_EMPTY(&children)) { + opt_delete(opt, "%pe [ignored result]\n", child); + opt_warning(opt, child, "The result of this expression is ignored.\n\n"); + continue; + } + + opt_visit(opt, "%pe\n", child); + bfs_expr_append(expr, child); + } + + struct bfs_expr *child = bfs_expr_children(expr); + if (child && !child->next) { + opt_debug(opt, "unary identity\n"); + return only_child(expr); + } + + return expr; +} + /** - * Optimize a top-level expression. + * Logical simplification visitor. */ -static struct bfs_expr *optimize_expr(struct opt_state *state, struct bfs_expr *expr) { - struct opt_facts saved_impure = *state->facts_when_impure; +static const struct visitor simplify = { + .name = "simplify", + .table = (const struct visitor_table[]) { + {eval_not, simplify_not}, + {eval_and, simplify_and}, + {eval_or, simplify_or}, + {eval_comma, simplify_comma}, + {NULL, NULL}, + }, +}; - expr = optimize_expr_recursive(state, expr); - if (!expr) { - return NULL; - } +/** Optimize an expression. */ +static struct bfs_expr *optimize(struct bfs_opt *opt, struct bfs_expr *expr) { + opt_enter(opt, "pass 0:\n"); + expr = visit(opt, expr, &annotate); + opt_leave(opt, NULL); + + /** Table of optimization passes. */ + static const struct { + /** Minimum optlevel for this pass. */ + int level; + /** The visitor for this pass. */ + const struct visitor *visitor; + } passes[] = { + {1, &canonicalize}, + {3, &reorder}, + {2, &data_flow}, + {1, &simplify}, + }; - if (state->ctx->optlevel >= 3 && reorder_expr_recursive(state, expr)) { - // Re-do optimizations to account for the new ordering - *state->facts_when_impure = saved_impure; - expr = optimize_expr_recursive(state, expr); - if (!expr) { - return NULL; + struct df_domain impure; + + for (int i = 0; i < 3; ++i) { + struct bfs_opt nested = *opt; + nested.impure = &impure; + impure = *opt->impure; + + opt_enter(&nested, "pass %d:\n", i + 1); + + for (size_t j = 0; j < countof(passes); ++j) { + if (opt->level < passes[j].level) { + continue; + } + + // Skip reordering the first time through the passes, to + // make warnings more understandable + if (passes[j].visitor == &reorder) { + if (i == 0) { + continue; + } else { + nested.warn = false; + } + } + + expr = visit(&nested, expr, passes[j].visitor); + if (!expr) { + return NULL; + } + } + + opt_leave(&nested, NULL); + + if (!bfs_expr_is_parent(expr)) { + break; } } + *opt->impure = impure; return expr; } +/** Estimate the odds of an expression calling stat(). */ +static float expr_stat_odds(struct bfs_expr *expr) { + if (expr->calls_stat) { + return 1.0; + } + + float nostat_odds = 1.0; + float reached_odds = 1.0; + for (struct bfs_expr *child = bfs_expr_children(expr); child; child = child->next) { + float child_odds = expr_stat_odds(child); + nostat_odds *= 1.0 - reached_odds * child_odds; + + if (expr->eval_fn == eval_and) { + reached_odds *= child->probability; + } else if (expr->eval_fn == eval_or) { + reached_odds *= 1.0 - child->probability; + } + } + + return 1.0 - nostat_odds; +} + +/** Estimate the odds of calling stat(). */ +static float estimate_stat_odds(struct bfs_ctx *ctx) { + if (ctx->unique) { + return 1.0; + } + + float nostat_odds = 1.0 - expr_stat_odds(ctx->exclude); + + float reached_odds = 1.0 - ctx->exclude->probability; + float expr_odds = expr_stat_odds(ctx->expr); + nostat_odds *= 1.0 - reached_odds * expr_odds; + + return 1.0 - nostat_odds; +} + int bfs_optimize(struct bfs_ctx *ctx) { bfs_ctx_dump(ctx, DEBUG_OPT); - struct opt_facts facts_when_impure; - set_facts_impossible(&facts_when_impure); + struct df_domain impure; + df_init_bottom(&impure); - struct opt_state state = { + struct bfs_opt opt = { .ctx = ctx, - .facts_when_impure = &facts_when_impure, + .level = ctx->optlevel, + .depth = 0, + .warn = ctx->warn, + .ignore_result = false, + .impure = &impure, }; - facts_init(&state.facts); + df_init_top(&opt.before); - ctx->exclude = optimize_expr(&state, ctx->exclude); + ctx->exclude = optimize(&opt, ctx->exclude); if (!ctx->exclude) { return -1; } // Only non-excluded files are evaluated - state.facts = state.facts_when_false; + opt.before = opt.after_false; + opt.ignore_result = true; - struct range *depth = &state.facts.ranges[DEPTH_RANGE]; - constrain_min(depth, ctx->mindepth); - constrain_max(depth, ctx->maxdepth); + struct df_range *depth = &opt.before.ranges[DEPTH_RANGE]; + if (ctx->mindepth > 0) { + constrain_min(depth, ctx->mindepth); + } + if (ctx->maxdepth < INT_MAX) { + constrain_max(depth, ctx->maxdepth); + } - ctx->expr = optimize_expr(&state, ctx->expr); + ctx->expr = optimize(&opt, ctx->expr); if (!ctx->expr) { return -1; } - ctx->expr = ignore_result(&state, ctx->expr); - - if (facts_are_impossible(&facts_when_impure)) { + if (opt.level >= 2 && df_is_bottom(&impure)) { bfs_warning(ctx, "This command won't do anything.\n\n"); } - const struct range *depth_when_impure = &facts_when_impure.ranges[DEPTH_RANGE]; - long long mindepth = depth_when_impure->min; - long long maxdepth = depth_when_impure->max; + const struct df_range *impure_depth = &impure.ranges[DEPTH_RANGE]; + long long mindepth = impure_depth->min; + long long maxdepth = impure_depth->max; - int optlevel = ctx->optlevel; + opt_enter(&opt, "post-process:\n"); - if (optlevel >= 2 && mindepth > ctx->mindepth) { + if (opt.level >= 2 && mindepth > ctx->mindepth) { if (mindepth > INT_MAX) { mindepth = INT_MAX; } + opt_enter(&opt, "${blu}-mindepth${rs} ${bld}%d${rs}\n", ctx->mindepth); ctx->mindepth = mindepth; - opt_debug(&state, 2, "data flow: mindepth --> %d\n", ctx->mindepth); + opt_leave(&opt, "${blu}-mindepth${rs} ${bld}%d${rs}\n", ctx->mindepth); } - if (optlevel >= 4 && maxdepth < ctx->maxdepth) { + if (opt.level >= 4 && maxdepth < ctx->maxdepth) { if (maxdepth < INT_MIN) { maxdepth = INT_MIN; } + opt_enter(&opt, "${blu}-maxdepth${rs} ${bld}%d${rs}\n", ctx->maxdepth); ctx->maxdepth = maxdepth; - opt_debug(&state, 4, "data flow: maxdepth --> %d\n", ctx->maxdepth); + opt_leave(&opt, "${blu}-maxdepth${rs} ${bld}%d${rs}\n", ctx->maxdepth); } + if (opt.level >= 3) { + // bfs_eval() can do lazy stat() calls, but only on one thread. + float lazy_cost = estimate_stat_odds(ctx); + // bftw() can do eager stat() calls in parallel + float eager_cost = 1.0 / ctx->threads; + + if (eager_cost <= lazy_cost) { + opt_enter(&opt, "lazy stat cost: ${ylw}%g${rs}\n", lazy_cost); + ctx->flags |= BFTW_STAT; + opt_leave(&opt, "eager stat cost: ${ylw}%g${rs}\n", eager_cost); + } + + } + + opt_leave(&opt, NULL); + return 0; } |