summaryrefslogtreecommitdiffstats
path: root/src/kd.rs
blob: 4f591f98e3478f48278b5ba528441eaf11c0cfcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
//! k-d trees.

use crate::coords::{Coordinates, CoordinateMetric, CoordinateProximity};
use crate::distance::{Metric, Proximity};
use crate::util::Ordered;
use crate::{ExactNeighbors, NearestNeighbors, Neighborhood};

use std::iter::FromIterator;
use std::ops::Deref;

/// A node in a k-d tree.
#[derive(Debug)]
struct KdNode<T> {
    /// The vantage point itself.
    item: T,
    /// The left subtree, if any.
    left: Option<Box<Self>>,
    /// The right subtree, if any.
    right: Option<Box<Self>>,
}

impl<T: Coordinates> KdNode<T> {
    /// Create a new KdNode.
    fn new(item: T) -> Self {
        Self {
            item,
            left: None,
            right: None,
        }
    }

    /// Create a balanced tree.
    fn balanced<I: IntoIterator<Item = T>>(items: I) -> Option<Self> {
        let mut nodes: Vec<_> = items
            .into_iter()
            .map(Self::new)
            .map(Box::new)
            .map(Some)
            .collect();

        Self::balanced_recursive(&mut nodes, 0)
            .map(|node| *node)
    }

    /// Create a balanced subtree.
    fn balanced_recursive(nodes: &mut [Option<Box<Self>>], level: usize) -> Option<Box<Self>> {
        if nodes.is_empty() {
            return None;
        }

        nodes.sort_by_cached_key(|x| Ordered::new(x.as_ref().unwrap().item.coord(level)));

        let (left, right) = nodes.split_at_mut(nodes.len() / 2);
        let (node, right) = right.split_first_mut().unwrap();
        let mut node = node.take().unwrap();

        let next = (level + 1) % node.item.dims();
        node.left = Self::balanced_recursive(left, next);
        node.right = Self::balanced_recursive(right, next);

        Some(node)
    }

    /// Push a new item into this subtree.
    fn push(&mut self, item: T, level: usize) {
        let next = (level + 1) % item.dims();

        if item.coord(level) <= self.item.coord(level) {
            if let Some(left) = &mut self.left {
                left.push(item, next);
            } else {
                self.left = Some(Box::new(Self::new(item)));
            }
        } else {
            if let Some(right) = &mut self.right {
                right.push(item, next);
            } else {
                self.right = Some(Box::new(Self::new(item)));
            }
        }
    }
}

/// Marker trait for [Proximity] implementations that are compatible with k-d trees.
pub trait KdProximity<V: ?Sized = Self>
where
    Self: Coordinates<Value = V::Value>,
    Self: Proximity<V>,
    Self: CoordinateProximity<V::Value, Distance = <Self as Proximity<V>>::Distance>,
    V: Coordinates,
{}

/// Blanket [KdProximity] implementation.
impl<K, V> KdProximity<V> for K
where
    K: Coordinates<Value = V::Value>,
    K: Proximity<V>,
    K: CoordinateProximity<V::Value, Distance = <K as Proximity<V>>::Distance>,
    V: Coordinates,
{}

/// Marker trait for [Metric] implementations that are compatible with k-d tree.
pub trait KdMetric<V: ?Sized = Self>
where
    Self: KdProximity<V>,
    Self: Metric<V>,
    Self: CoordinateMetric<V::Value>,
    V: Coordinates,
{}

/// Blanket [KdMetric] implementation.
impl<K, V> KdMetric<V> for K
where
    K: KdProximity<V>,
    K: Metric<V>,
    K: CoordinateMetric<V::Value>,
    V: Coordinates,
{}

trait KdSearch<K, V, N>: Copy
where
    K: KdProximity<V>,
    V: Coordinates + Copy,
    N: Neighborhood<K, V>,
{
    /// Get this node's item.
    fn item(self) -> V;

    /// Get the left subtree.
    fn left(self) -> Option<Self>;

    /// Get the right subtree.
    fn right(self) -> Option<Self>;

    /// Recursively search for nearest neighbors.
    fn search(self, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
        let item = self.item();
        neighborhood.consider(item);

        let target = neighborhood.target();

        if target.coord(level) <= item.coord(level) {
            self.search_near(self.left(), level, closest, neighborhood);
            self.search_far(self.right(), level, closest, neighborhood);
        } else {
            self.search_near(self.right(), level, closest, neighborhood);
            self.search_far(self.left(), level, closest, neighborhood);
        }
    }

    /// Search the subtree closest to the target.
    fn search_near(self, near: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
        if let Some(near) = near {
            let next = (level + 1) % self.item().dims();
            near.search(next, closest, neighborhood);
        }
    }

    /// Search the subtree farthest from the target.
    fn search_far(self, far: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
        if let Some(far) = far {
            // Update the closest possible point
            let item = self.item();
            let target = neighborhood.target();
            let saved = std::mem::replace(&mut closest[level], item.coord(level));
            if neighborhood.contains(target.distance_to_coords(closest)) {
                let next = (level + 1) % item.dims();
                far.search(next, closest, neighborhood);
            }
            closest[level] = saved;
        }
    }
}

impl<'a, K, V, N> KdSearch<K, &'a V, N> for &'a KdNode<V>
where
    K: KdProximity<&'a V>,
    V: Coordinates,
    N: Neighborhood<K, &'a V>,
{
    fn item(self) -> &'a V {
        &self.item
    }

    fn left(self) -> Option<Self> {
        self.left.as_ref().map(Box::deref)
    }

    fn right(self) -> Option<Self> {
        self.right.as_ref().map(Box::deref)
    }
}

/// A [k-d tree](https://en.wikipedia.org/wiki/K-d_tree).
#[derive(Debug)]
pub struct KdTree<T> {
    root: Option<KdNode<T>>,
}

impl<T: Coordinates> KdTree<T> {
    /// Create an empty tree.
    pub fn new() -> Self {
        Self {
            root: None,
        }
    }

    /// Create a balanced tree out of a sequence of items.
    pub fn balanced<I: IntoIterator<Item = T>>(items: I) -> Self {
        Self {
            root: KdNode::balanced(items),
        }
    }

    /// Rebalance this k-d tree.
    pub fn balance(&mut self) {
        let mut nodes = Vec::new();
        if let Some(root) = self.root.take() {
            nodes.push(Some(Box::new(root)));
        }

        let mut i = 0;
        while i < nodes.len() {
            let node = nodes[i].as_mut().unwrap();
            let inside = node.left.take();
            let outside = node.right.take();
            if inside.is_some() {
                nodes.push(inside);
            }
            if outside.is_some() {
                nodes.push(outside);
            }

            i += 1;
        }

        self.root = KdNode::balanced_recursive(&mut nodes, 0)
            .map(|node| *node);
    }

    /// Push a new item into the tree.
    ///
    /// Inserting elements individually tends to unbalance the tree.  Use [KdTree::balanced] if
    /// possible to create a balanced tree from a batch of items.
    pub fn push(&mut self, item: T) {
        if let Some(root) = &mut self.root {
            root.push(item, 0);
        } else {
            self.root = Some(KdNode::new(item));
        }
    }
}

impl<T: Coordinates> Extend<T> for KdTree<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
        if self.root.is_some() {
            for item in items {
                self.push(item);
            }
        } else {
            self.root = KdNode::balanced(items);
        }
    }
}

impl<T: Coordinates> FromIterator<T> for KdTree<T> {
    fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
        Self::balanced(items)
    }
}

/// An iterator that moves values out of a k-d tree.
#[derive(Debug)]
pub struct IntoIter<T> {
    stack: Vec<KdNode<T>>,
}

impl<T> IntoIter<T> {
    fn new(node: Option<KdNode<T>>) -> Self {
        Self {
            stack: node.into_iter().collect(),
        }
    }
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.stack.pop().map(|node| {
            if let Some(left) = node.left {
                self.stack.push(*left);
            }
            if let Some(right) = node.right {
                self.stack.push(*right);
            }
            node.item
        })
    }
}

impl<T> IntoIterator for KdTree<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter::new(self.root)
    }
}

impl<K, V> NearestNeighbors<K, V> for KdTree<V>
where
    K: KdProximity<V>,
    V: Coordinates,
{
    fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N
    where
        K: 'k,
        V: 'v,
        N: Neighborhood<&'k K, &'v V>,
    {
        if let Some(root) = &self.root {
            let mut closest = neighborhood.target().as_vec();
            root.search(0, &mut closest, &mut neighborhood);
        }
        neighborhood
    }
}

impl<K, V> ExactNeighbors<K, V> for KdTree<V>
where
    K: KdMetric<V>,
    V: Coordinates,
{}

/// A node in a flat k-d tree.
#[derive(Debug)]
struct FlatKdNode<T> {
    /// The vantage point itself.
    item: T,
    /// The size of the left subtree.
    left_len: usize,
}

impl<T: Coordinates> FlatKdNode<T> {
    /// Create a new FlatKdNode.
    fn new(item: T) -> Self {
        Self {
            item,
            left_len: 0,
        }
    }

    /// Create a balanced tree.
    fn balanced<I: IntoIterator<Item = T>>(items: I) -> Vec<Self> {
        let mut nodes: Vec<_> = items
            .into_iter()
            .map(Self::new)
            .collect();

        Self::balance_recursive(&mut nodes, 0);

        nodes
    }

    /// Create a balanced subtree.
    fn balance_recursive(nodes: &mut [Self], level: usize) {
        if !nodes.is_empty() {
            nodes.sort_by_cached_key(|x| Ordered::new(x.item.coord(level)));

            let mid = nodes.len() / 2;
            nodes.swap(0, mid);

            let (node, children) = nodes.split_first_mut().unwrap();
            let (left, right)  = children.split_at_mut(mid);
            node.left_len = left.len();

            let next = (level + 1) % node.item.dims();
            Self::balance_recursive(left, next);
            Self::balance_recursive(right, next);
        }
    }
}

impl<'a, K, V, N> KdSearch<K, &'a V, N> for &'a [FlatKdNode<V>]
where
    K: KdProximity<&'a V>,
    V: Coordinates,
    N: Neighborhood<K, &'a V>,
{
    fn item(self) -> &'a V {
        &self[0].item
    }

    fn left(self) -> Option<Self> {
        let end = self[0].left_len + 1;
        if end > 1 {
            Some(&self[1..end])
        } else {
            None
        }
    }

    fn right(self) -> Option<Self> {
        let start = self[0].left_len + 1;
        if start < self.len() {
            Some(&self[start..])
        } else {
            None
        }
    }
}

/// A [k-d tree] stored as a flat array.
///
/// A FlatKdTree is always balanced and usually more efficient than a [KdTree], but doesn't support
/// dynamic updates.
///
/// [k-d tree]: https://en.wikipedia.org/wiki/K-d_tree
#[derive(Debug)]
pub struct FlatKdTree<T> {
    nodes: Vec<FlatKdNode<T>>,
}

impl<T: Coordinates> FlatKdTree<T> {
    /// Create a balanced tree out of a sequence of items.
    pub fn balanced<I: IntoIterator<Item = T>>(items: I) -> Self {
        Self {
            nodes: FlatKdNode::balanced(items),
        }
    }
}

impl<T: Coordinates> FromIterator<T> for FlatKdTree<T> {
    fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
        Self::balanced(items)
    }
}

/// An iterator that moves values out of a flat k-d tree.
#[derive(Debug)]
pub struct FlatIntoIter<T>(std::vec::IntoIter<FlatKdNode<T>>);

impl<T> Iterator for FlatIntoIter<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.0.next().map(|n| n.item)
    }
}

impl<T> IntoIterator for FlatKdTree<T> {
    type Item = T;
    type IntoIter = FlatIntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        FlatIntoIter(self.nodes.into_iter())
    }
}

impl<K, V> NearestNeighbors<K, V> for FlatKdTree<V>
where
    K: KdProximity<V>,
    V: Coordinates,
{
    fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N
    where
        K: 'k,
        V: 'v,
        N: Neighborhood<&'k K, &'v V>,
    {
        if !self.nodes.is_empty() {
            let mut closest = neighborhood.target().as_vec();
            self.nodes.as_slice().search(0, &mut closest, &mut neighborhood);
        }
        neighborhood
    }
}

impl<K, V> ExactNeighbors<K, V> for FlatKdTree<V>
where
    K: KdMetric<V>,
    V: Coordinates,
{}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::tests::test_nearest_neighbors;

    #[test]
    fn test_kd_tree() {
        test_nearest_neighbors(KdTree::from_iter);
    }

    #[test]
    fn test_unbalanced_kd_tree() {
        test_nearest_neighbors(|points| {
            let mut tree = KdTree::new();
            for point in points {
                tree.push(point);
            }
            tree
        });
    }

    #[test]
    fn test_flat_kd_tree() {
        test_nearest_neighbors(FlatKdTree::from_iter);
    }
}