summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/kd.rs357
-rw-r--r--src/lib.rs1
2 files changed, 358 insertions, 0 deletions
diff --git a/src/kd.rs b/src/kd.rs
new file mode 100644
index 0000000..97616e7
--- /dev/null
+++ b/src/kd.rs
@@ -0,0 +1,357 @@
+//! k-d trees.
+
+use crate::coords::{Coordinates, CoordinateMetric, CoordinateProximity};
+use crate::distance::{Metric, Proximity};
+use crate::util::Ordered;
+use crate::{ExactNeighbors, NearestNeighbors, Neighborhood};
+
+use std::iter::FromIterator;
+use std::ops::Deref;
+
+/// A node in a k-d tree.
+#[derive(Debug)]
+struct KdNode<T> {
+ /// The vantage point itself.
+ item: T,
+ /// The left subtree, if any.
+ left: Option<Box<Self>>,
+ /// The right subtree, if any.
+ right: Option<Box<Self>>,
+}
+
+impl<T: Coordinates> KdNode<T> {
+ /// Create a new KdNode.
+ fn new(item: T) -> Self {
+ Self {
+ item,
+ left: None,
+ right: None,
+ }
+ }
+
+ /// Create a balanced tree.
+ fn balanced<I: IntoIterator<Item = T>>(items: I) -> Option<Self> {
+ let mut nodes: Vec<_> = items
+ .into_iter()
+ .map(Self::new)
+ .map(Box::new)
+ .map(Some)
+ .collect();
+
+ Self::balanced_recursive(&mut nodes, 0)
+ .map(|node| *node)
+ }
+
+ /// Create a balanced subtree.
+ fn balanced_recursive(nodes: &mut [Option<Box<Self>>], level: usize) -> Option<Box<Self>> {
+ if nodes.is_empty() {
+ return None;
+ }
+
+ nodes.sort_by_cached_key(|x| Ordered::new(x.as_ref().unwrap().item.coord(level)));
+
+ let (left, right) = nodes.split_at_mut(nodes.len() / 2);
+ let (node, right) = right.split_first_mut().unwrap();
+ let mut node = node.take().unwrap();
+
+ let next = (level + 1) % node.item.dims();
+ node.left = Self::balanced_recursive(left, next);
+ node.right = Self::balanced_recursive(right, next);
+
+ Some(node)
+ }
+
+ /// Push a new item into this subtree.
+ fn push(&mut self, item: T, level: usize) {
+ let next = (level + 1) % item.dims();
+
+ if item.coord(level) <= self.item.coord(level) {
+ if let Some(left) = &mut self.left {
+ left.push(item, next);
+ } else {
+ self.left = Some(Box::new(Self::new(item)));
+ }
+ } else {
+ if let Some(right) = &mut self.right {
+ right.push(item, next);
+ } else {
+ self.right = Some(Box::new(Self::new(item)));
+ }
+ }
+ }
+}
+
+/// Marker trait for [Proximity] implementations that are compatible with k-d trees.
+pub trait KdProximity<V: ?Sized = Self>
+where
+ Self: Coordinates<Value = V::Value>,
+ Self: Proximity<V>,
+ Self: CoordinateProximity<V::Value, Distance = <Self as Proximity<V>>::Distance>,
+ V: Coordinates,
+{}
+
+/// Blanket [KdProximity] implementation.
+impl<K, V> KdProximity<V> for K
+where
+ K: Coordinates<Value = V::Value>,
+ K: Proximity<V>,
+ K: CoordinateProximity<V::Value, Distance = <K as Proximity<V>>::Distance>,
+ V: Coordinates,
+{}
+
+/// Marker trait for [Metric] implementations that are compatible with k-d tree.
+pub trait KdMetric<V: ?Sized = Self>
+where
+ Self: KdProximity<V>,
+ Self: Metric<V>,
+ Self: CoordinateMetric<V::Value>,
+ V: Coordinates,
+{}
+
+/// Blanket [KdMetric] implementation.
+impl<K, V> KdMetric<V> for K
+where
+ K: KdProximity<V>,
+ K: Metric<V>,
+ K: CoordinateMetric<V::Value>,
+ V: Coordinates,
+{}
+
+trait KdSearch<K, V, N>: Copy
+where
+ K: KdProximity<V>,
+ V: Coordinates + Copy,
+ N: Neighborhood<K, V>,
+{
+ /// Get this node's item.
+ fn item(self) -> V;
+
+ /// Get the left subtree.
+ fn left(self) -> Option<Self>;
+
+ /// Get the right subtree.
+ fn right(self) -> Option<Self>;
+
+ /// Recursively search for nearest neighbors.
+ fn search(self, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
+ let item = self.item();
+ neighborhood.consider(item);
+
+ let target = neighborhood.target();
+
+ if target.coord(level) <= item.coord(level) {
+ self.search_near(self.left(), level, closest, neighborhood);
+ self.search_far(self.right(), level, closest, neighborhood);
+ } else {
+ self.search_near(self.right(), level, closest, neighborhood);
+ self.search_far(self.left(), level, closest, neighborhood);
+ }
+ }
+
+ /// Search the subtree closest to the target.
+ fn search_near(self, near: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
+ if let Some(near) = near {
+ let next = (level + 1) % self.item().dims();
+ near.search(next, closest, neighborhood);
+ }
+ }
+
+ /// Search the subtree farthest from the target.
+ fn search_far(self, far: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) {
+ if let Some(far) = far {
+ // Update the closest possible point
+ let item = self.item();
+ let target = neighborhood.target();
+ let saved = std::mem::replace(&mut closest[level], item.coord(level));
+ if neighborhood.contains(target.distance_to_coords(closest)) {
+ let next = (level + 1) % item.dims();
+ far.search(next, closest, neighborhood);
+ }
+ closest[level] = saved;
+ }
+ }
+}
+
+impl<'a, K, V, N> KdSearch<K, &'a V, N> for &'a KdNode<V>
+where
+ K: KdProximity<&'a V>,
+ V: Coordinates,
+ N: Neighborhood<K, &'a V>,
+{
+ fn item(self) -> &'a V {
+ &self.item
+ }
+
+ fn left(self) -> Option<Self> {
+ self.left.as_ref().map(Box::deref)
+ }
+
+ fn right(self) -> Option<Self> {
+ self.right.as_ref().map(Box::deref)
+ }
+}
+
+/// A [k-d tree](https://en.wikipedia.org/wiki/K-d_tree).
+#[derive(Debug)]
+pub struct KdTree<T> {
+ root: Option<KdNode<T>>,
+}
+
+impl<T: Coordinates> KdTree<T> {
+ /// Create an empty tree.
+ pub fn new() -> Self {
+ Self {
+ root: None,
+ }
+ }
+
+ /// Create a balanced tree out of a sequence of items.
+ pub fn balanced<I: IntoIterator<Item = T>>(items: I) -> Self {
+ Self {
+ root: KdNode::balanced(items),
+ }
+ }
+
+ /// Rebalance this k-d tree.
+ pub fn balance(&mut self) {
+ let mut nodes = Vec::new();
+ if let Some(root) = self.root.take() {
+ nodes.push(Some(Box::new(root)));
+ }
+
+ let mut i = 0;
+ while i < nodes.len() {
+ let node = nodes[i].as_mut().unwrap();
+ let inside = node.left.take();
+ let outside = node.right.take();
+ if inside.is_some() {
+ nodes.push(inside);
+ }
+ if outside.is_some() {
+ nodes.push(outside);
+ }
+
+ i += 1;
+ }
+
+ self.root = KdNode::balanced_recursive(&mut nodes, 0)
+ .map(|node| *node);
+ }
+
+ /// Push a new item into the tree.
+ ///
+ /// Inserting elements individually tends to unbalance the tree. Use [KdTree::balanced] if
+ /// possible to create a balanced tree from a batch of items.
+ pub fn push(&mut self, item: T) {
+ if let Some(root) = &mut self.root {
+ root.push(item, 0);
+ } else {
+ self.root = Some(KdNode::new(item));
+ }
+ }
+}
+
+impl<T: Coordinates> Extend<T> for KdTree<T> {
+ fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
+ if self.root.is_some() {
+ for item in items {
+ self.push(item);
+ }
+ } else {
+ self.root = KdNode::balanced(items);
+ }
+ }
+}
+
+impl<T: Coordinates> FromIterator<T> for KdTree<T> {
+ fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
+ Self::balanced(items)
+ }
+}
+
+/// An iterator that moves values out of a k-d tree.
+#[derive(Debug)]
+pub struct IntoIter<T> {
+ stack: Vec<KdNode<T>>,
+}
+
+impl<T> IntoIter<T> {
+ fn new(node: Option<KdNode<T>>) -> Self {
+ Self {
+ stack: node.into_iter().collect(),
+ }
+ }
+}
+
+impl<T> Iterator for IntoIter<T> {
+ type Item = T;
+
+ fn next(&mut self) -> Option<T> {
+ self.stack.pop().map(|node| {
+ if let Some(left) = node.left {
+ self.stack.push(*left);
+ }
+ if let Some(right) = node.right {
+ self.stack.push(*right);
+ }
+ node.item
+ })
+ }
+}
+
+impl<T> IntoIterator for KdTree<T> {
+ type Item = T;
+ type IntoIter = IntoIter<T>;
+
+ fn into_iter(self) -> Self::IntoIter {
+ IntoIter::new(self.root)
+ }
+}
+
+impl<K, V> NearestNeighbors<K, V> for KdTree<V>
+where
+ K: KdProximity<V>,
+ V: Coordinates,
+{
+ fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N
+ where
+ K: 'k,
+ V: 'v,
+ N: Neighborhood<&'k K, &'v V>,
+ {
+ if let Some(root) = &self.root {
+ let mut closest = neighborhood.target().as_vec();
+ root.search(0, &mut closest, &mut neighborhood);
+ }
+ neighborhood
+ }
+}
+
+impl<K, V> ExactNeighbors<K, V> for KdTree<V>
+where
+ K: KdMetric<V>,
+ V: Coordinates,
+{}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ use crate::tests::test_nearest_neighbors;
+
+ #[test]
+ fn test_kd_tree() {
+ test_nearest_neighbors(KdTree::from_iter);
+ }
+
+ #[test]
+ fn test_unbalanced_kd_tree() {
+ test_nearest_neighbors(|points| {
+ let mut tree = KdTree::new();
+ for point in points {
+ tree.push(point);
+ }
+ tree
+ });
+ }
+}
diff --git a/src/lib.rs b/src/lib.rs
index e7312bf..8f7487b 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -6,6 +6,7 @@ pub mod coords;
pub mod distance;
pub mod euclid;
pub mod exhaustive;
+pub mod kd;
pub mod vp;
mod util;