diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2020-05-28 14:47:10 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2020-06-24 10:02:23 -0400 |
commit | 0bc4df6a1ab14ecf55d68cc86134d14b26eca6e5 (patch) | |
tree | 9da22c96b160ece1f7efc463bbd6520aadafd85c /src | |
parent | 7677a551690458c4bc588955ea0d4b5db7f8942d (diff) | |
download | acap-0bc4df6a1ab14ecf55d68cc86134d14b26eca6e5.tar.xz |
exhaustive: Implement an exhaustive search index
Diffstat (limited to 'src')
-rw-r--r-- | src/exhaustive.rs | 89 | ||||
-rw-r--r-- | src/lib.rs | 32 |
2 files changed, 121 insertions, 0 deletions
diff --git a/src/exhaustive.rs b/src/exhaustive.rs new file mode 100644 index 0000000..909edda --- /dev/null +++ b/src/exhaustive.rs @@ -0,0 +1,89 @@ +//! Exhaustive nearest neighbor search. + +use crate::distance::Proximity; +use crate::{ExactNeighbors, NearestNeighbors, Neighborhood}; + +use std::iter::FromIterator; + +/// A [NearestNeighbors] implementation that does exhaustive search. +#[derive(Debug)] +pub struct ExhaustiveSearch<T>(Vec<T>); + +impl<T> ExhaustiveSearch<T> { + /// Create an empty ExhaustiveSearch index. + pub fn new() -> Self { + Self(Vec::new()) + } + + /// Add a new item to the index. + pub fn push(&mut self, item: T) { + self.0.push(item); + } + + /// Get the size of this index. + pub fn len(&self) -> usize { + self.0.len() + } + + /// Check if this index is empty. + pub fn is_empty(&self) -> bool { + self.0.is_empty() + } +} + +impl<T> Default for ExhaustiveSearch<T> { + fn default() -> Self { + Self::new() + } +} + +impl<T> FromIterator<T> for ExhaustiveSearch<T> { + fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self { + Self(items.into_iter().collect()) + } +} + +impl<T> IntoIterator for ExhaustiveSearch<T> { + type Item = T; + type IntoIter = std::vec::IntoIter<T>; + + fn into_iter(self) -> Self::IntoIter { + self.0.into_iter() + } +} + +impl<T> Extend<T> for ExhaustiveSearch<T> { + fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { + for value in iter { + self.push(value); + } + } +} + +impl<K: Proximity<V>, V> NearestNeighbors<K, V> for ExhaustiveSearch<V> { + fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N + where + K: 'k, + V: 'v, + N: Neighborhood<&'k K, &'v V>, + { + for e in &self.0 { + neighborhood.consider(e); + } + neighborhood + } +} + +impl<K: Proximity<V>, V> ExactNeighbors<K, V> for ExhaustiveSearch<V> {} + +#[cfg(test)] +pub mod tests { + use super::*; + + use crate::tests::test_nearest_neighbors; + + #[test] + fn test_exhaustive_index() { + test_nearest_neighbors(ExhaustiveSearch::from_iter); + } +} @@ -5,6 +5,7 @@ pub mod coords; pub mod distance; pub mod euclid; +pub mod exhaustive; pub use coords::Coordinates; pub use distance::{Distance, Metric, Proximity}; @@ -303,6 +304,12 @@ pub trait ExactNeighbors<K: Proximity<V>, V = K>: NearestNeighbors<K, V> {} pub mod tests { use super::*; + use crate::exhaustive::ExhaustiveSearch; + + use rand::prelude::*; + + use std::iter::FromIterator; + type Point = Euclidean<[f32; 3]>; /// Test a [NearestNeighbors] implementation. @@ -313,6 +320,7 @@ pub mod tests { { test_empty(&from_iter); test_pythagorean(&from_iter); + test_random_points(&from_iter); } fn test_empty<T, F>(from_iter: &F) @@ -385,4 +393,28 @@ pub mod tests { ] ); } + + fn test_random_points<T, F>(from_iter: &F) + where + T: NearestNeighbors<Point>, + F: Fn(Vec<Point>) -> T, + { + let mut points = Vec::new(); + for _ in 0..256 { + points.push(Euclidean([random(), random(), random()])); + } + + let index = from_iter(points.clone()); + let eindex = ExhaustiveSearch::from_iter(points.clone()); + + let target = Euclidean([random(), random(), random()]); + + assert_eq!( + index.k_nearest(&target, 3), + eindex.k_nearest(&target, 3), + "target: {:?}, points: {:#?}", + target, + points, + ); + } } |