diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2020-07-06 22:24:02 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2020-07-06 22:33:10 -0400 |
commit | 5f85a59d4be37d350bcf1ee62c25ac1f84d71770 (patch) | |
tree | 8fc7ea8e59226c5e677d7b9aef39b0b2be5f28b7 /src/kd.rs | |
parent | ed4d7b7143f1a8a9602698ca3e60e18bbb4dd226 (diff) | |
download | acap-5f85a59d4be37d350bcf1ee62c25ac1f84d71770.tar.xz |
kd: Use a more traditional k-d tree implementation
The slight extra pruning possible in the previous implementation didn't
seem to be worth it. The new, simpler implementation is also about 30%
faster in most of the benchmarks.
This gets rid of Coordinate{Proximity,Metric} as they're not necessary
any more (and the old ExactNeighbors impl was too restrictive anyway).
Diffstat (limited to 'src/kd.rs')
-rw-r--r-- | src/kd.rs | 92 |
1 files changed, 35 insertions, 57 deletions
@@ -1,10 +1,13 @@ //! [k-d trees](https://en.wikipedia.org/wiki/K-d_tree). -use crate::coords::{CoordinateMetric, CoordinateProximity, Coordinates}; -use crate::distance::{Metric, Proximity}; +use crate::coords::Coordinates; +use crate::distance::Proximity; +use crate::lp::Minkowski; use crate::util::Ordered; use crate::{ExactNeighbors, NearestNeighbors, Neighborhood}; +use num_traits::Signed; + use std::iter::FromIterator; use std::ops::Deref; @@ -86,7 +89,7 @@ pub trait KdProximity<V: ?Sized = Self> where Self: Coordinates<Value = V::Value>, Self: Proximity<V>, - Self: CoordinateProximity<V::Value, Distance = <Self as Proximity<V>>::Distance>, + Self::Value: PartialOrd<Self::Distance>, V: Coordinates, {} @@ -95,31 +98,14 @@ impl<K, V> KdProximity<V> for K where K: Coordinates<Value = V::Value>, K: Proximity<V>, - K: CoordinateProximity<V::Value, Distance = <K as Proximity<V>>::Distance>, - V: Coordinates, -{} - -/// Marker trait for [`Metric`] implementations that are compatible with k-d tree. -pub trait KdMetric<V: ?Sized = Self> -where - Self: KdProximity<V>, - Self: Metric<V>, - Self: CoordinateMetric<V::Value>, - V: Coordinates, -{} - -/// Blanket [`KdMetric`] implementation. -impl<K, V> KdMetric<V> for K -where - K: KdProximity<V>, - K: Metric<V>, - K: CoordinateMetric<V::Value>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, {} trait KdSearch<K, V, N>: Copy where K: KdProximity<V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates + Copy, N: Neighborhood<K, V>, { @@ -133,41 +119,29 @@ where fn right(self) -> Option<Self>; /// Recursively search for nearest neighbors. - fn search(self, level: usize, closest: &mut [V::Value], neighborhood: &mut N) { + fn search(self, level: usize, neighborhood: &mut N) { let item = self.item(); neighborhood.consider(item); let target = neighborhood.target(); - if target.coord(level) <= item.coord(level) { - self.search_near(self.left(), level, closest, neighborhood); - self.search_far(self.right(), level, closest, neighborhood); + let bound = target.coord(level) - item.coord(level); + let (near, far) = if bound.is_negative() { + (self.left(), self.right()) } else { - self.search_near(self.right(), level, closest, neighborhood); - self.search_far(self.left(), level, closest, neighborhood); - } - } + (self.right(), self.left()) + }; + + let next = (level + 1) % self.item().dims(); - /// Search the subtree closest to the target. - fn search_near(self, near: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) { if let Some(near) = near { - let next = (level + 1) % self.item().dims(); - near.search(next, closest, neighborhood); + near.search(next, neighborhood); } - } - /// Search the subtree farthest from the target. - fn search_far(self, far: Option<Self>, level: usize, closest: &mut [V::Value], neighborhood: &mut N) { if let Some(far) = far { - // Update the closest possible point - let item = self.item(); - let target = neighborhood.target(); - let saved = std::mem::replace(&mut closest[level], item.coord(level)); - if neighborhood.contains(target.distance_to_coords(closest)) { - let next = (level + 1) % item.dims(); - far.search(next, closest, neighborhood); + if neighborhood.contains(bound.abs()) { + far.search(next, neighborhood); } - closest[level] = saved; } } } @@ -175,6 +149,7 @@ where impl<'a, K, V, N> KdSearch<K, &'a V, N> for &'a KdNode<V> where K: KdProximity<&'a V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, N: Neighborhood<K, &'a V>, { @@ -315,6 +290,7 @@ impl<T> IntoIterator for KdTree<T> { impl<K, V> NearestNeighbors<K, V> for KdTree<V> where K: KdProximity<V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, { fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N @@ -324,16 +300,17 @@ where N: Neighborhood<&'k K, &'v V>, { if let Some(root) = &self.root { - let mut closest = neighborhood.target().as_vec(); - root.search(0, &mut closest, &mut neighborhood); + root.search(0, &mut neighborhood); } neighborhood } } +/// k-d trees are exact for [Minkowski] distances. impl<K, V> ExactNeighbors<K, V> for KdTree<V> where - K: KdMetric<V>, + K: KdProximity<V> + Minkowski<V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, {} @@ -389,6 +366,7 @@ impl<T: Coordinates> FlatKdNode<T> { impl<'a, K, V, N> KdSearch<K, &'a V, N> for &'a [FlatKdNode<V>] where K: KdProximity<&'a V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, N: Neighborhood<K, &'a V>, { @@ -465,6 +443,7 @@ impl<T> IntoIterator for FlatKdTree<T> { impl<K, V> NearestNeighbors<K, V> for FlatKdTree<V> where K: KdProximity<V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, { fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N @@ -474,18 +453,17 @@ where N: Neighborhood<&'k K, &'v V>, { if !self.nodes.is_empty() { - let mut closest = neighborhood.target().as_vec(); - self.nodes - .as_slice() - .search(0, &mut closest, &mut neighborhood); + self.nodes.as_slice().search(0, &mut neighborhood); } neighborhood } } +/// k-d trees are exact for [Minkowski] distances. impl<K, V> ExactNeighbors<K, V> for FlatKdTree<V> where - K: KdMetric<V>, + K: KdProximity<V> + Minkowski<V>, + K::Value: PartialOrd<K::Distance>, V: Coordinates, {} @@ -493,16 +471,16 @@ where mod tests { use super::*; - use crate::tests::test_nearest_neighbors; + use crate::tests::test_exact_neighbors; #[test] fn test_kd_tree() { - test_nearest_neighbors(KdTree::from_iter); + test_exact_neighbors(KdTree::from_iter); } #[test] fn test_unbalanced_kd_tree() { - test_nearest_neighbors(|points| { + test_exact_neighbors(|points| { let mut tree = KdTree::new(); for point in points { tree.push(point); @@ -513,6 +491,6 @@ mod tests { #[test] fn test_flat_kd_tree() { - test_nearest_neighbors(FlatKdTree::from_iter); + test_exact_neighbors(FlatKdTree::from_iter); } } |